44 research outputs found

    Reversing the direction of time: Does the visibility of spatial representations of time shape temporal focus?

    Get PDF
    While people around the world mentally represent time in terms of space, there is substantial cross-cultural variability regarding which temporal constructs are mapped onto which parts in space. Do particular spatial layouts of time – as expressed through metaphors in language – shape temporal focus? We trained native English speakers to use spatiotemporal metaphors in a way such that the flow of time is reversed, representing the future behind the body (out of visible space) and the past ahead of the body (within visible space). In a task measuring perceived relevance of past events, people considered past events and present (or immediate past) events to be more relevant after using the reversed metaphors compared to a control group that used canonical metaphors spatializing the past behind and the future ahead of the body (Experiment 1). In a control measure in which temporal information was removed, this effect disappeared (Experiment 2). Taken together, these findings suggest that the degree to which people focus on the past may be shaped by the visibility of the past in spatiotemporal metaphors used in language

    Фотоэлектрохимическое окисление ацетилсалициловой кислоты

    Get PDF
    The progression of neurodegenerative diseases as well as healthy aging is accompanied by structural changes of the brain. These changes are often only subtle when considered over time intervals of several months. Therefore morphometrical techniques for their detection in longitudinally acquired MR images must be highly sensitive, and they require a careful validation. In the present study, a novel processing chain for a longitudinal analysis based on deformation field morphometry is described. Procedures for its quantitative validation are also reported: Deformation fields were computed for the simulation of non-linear, local structural changes of human brains. Applying these deformation fields to "original" MR images yielded deformed MR images. The volume changes defined by the deformation fields represented the standard, against which the results of the longitudinal analysis of each pair of original and deformed MR image were compared. The proposed processing chain enabled to localize and to quantify simulated local atrophies near the cortex as well as in deep brain structures. An exemplary analysis of serial MR images of a patient suffering from an atypical Parkinson syndrome (cortico-basal degeneration, CBD) and healthy control subjects is presented, showing a characteristic pattern of volume changes in the brain of the patient which is strikingly different from the controls' patterns of changes

    Natural polymorphisms in mycobacterium tuberculosis conferring resistance to delamanid in drug-naïve patients.

    Get PDF
    Mutations in the genes of the F420 signaling pathway, including dnn, fgd1, fbiA, fbiB, fbiC, and fbiD, of Mycobacterium tuberculosis (Mtb) complex can lead to delamanid resistance. We searched for such mutations among 129 Mtb strains from Asia, South-America, and Africa using whole-genome sequencing; 70 (54%) strains had at least one mutation in one of the genes. For ten strains with mutations, we determined the minimum inhibitory concentration (MIC) of delamanid. We found one strain from a delamanid-naïve patient carrying the natural polymorphism Tyr29del (ddn) that was associated with a critical MIC to delamanid

    A multigrid method for anisotropic PDEs in elastic image registration

    No full text
    This paper deals with the solution of a non-linear ill-conditioned inverse problem arising in digital image registration. In the first part of the paper, we define the problem as the minimization of a regularized non-linear least-squares functional, which measures the image difference and smoothness of the transformation. We study inexact Newton methods for solving this problem, i.e. we linearize the functional around a current approximation and replace the Hessian by a Suitable operator in order to obtain well-posed subproblems in each step of the iteration.These anisotropic subproblems are solved using a multigrid solver. Due to the anisotropy in the coefficients of the underlying equations, standard multigrid solvers suffer from poor convergence rates. We discuss modifications to the multigrid components, specifically to the smoothing procedure, the interpolation and the coarse grid correction. Numerical results that demonstrate the improvements obtained with these new components are given. Copyright (c) 2006 John Wiley & Sons, Ltd

    Analysis of lesions in patients with unilateral tactile agnosia using cytoarchitectonic probabilistic maps.

    No full text
    We propose a novel methodical approach to lesion analyses involving high-resolution MR images in combination with probabilistic cytoarchitectonic maps. 3D-MR images of the whole brain and the manually segmented lesion mask are spatially normalized to the reference brain of a stereotaxic probabilistic cytoarchitectonic atlas using a multiscale registration algorithm based on an elastic model. The procedure is demonstrated in three patients suffering from aperceptive tactile agnosia of the right hand due to chronic infarction of the left parietal cortex. Patient 1 presents a lesion in areas of the postcentral sulcus, Patient 3 in areas of the superior parietal lobule and adjacent intraparietal sulcus, and Patient 2 lesions in both regions. On the basis of neurobehavioral data, we conjectured degradation of sequential elementary sensory information processing within the postcentral gyrus, impeding texture recognition in Patients 1 and 2, and disturbed kinaesthetic information processing in the posterior parietal lobe, causing degraded shape recognition in the patients 2 and 3. The involvement of Brodmann areas 4a, 4p, 3a, 3b, 1, 2, and areas IP1 and IP2 of the intraparietal sulcus was assessed in terms of the voxel overlap between the spatially transformed lesion masks and the 50%-isocontours of the cytoarchitectonic maps. The disruption of the critical cytoarchitectonic areas and the impaired subfunctions, texture and shape recognition, relate as conjectured above. We conclude that the proposed method represents a promising approach to hypothesis-driven lesion analyses, yielding lesion-function correlates based on a cytoarchitectonic model. Finally, the lesion-function correlates are validated by functional imaging reference data
    corecore