53 research outputs found

    Outcome Prediction of Consciousness Disorders in the Acute Stage Based on a Complementary Motor Behavioural Tool.

    Get PDF
    Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation between classes; longitudinal regression modelling of the CRS-R data identified distinct outcome evolution, but not earlier than 19 days. Second, the MBT yielded a significant outcome predictability in the acute phase (p<0.02, sensitivity>0.81). Third, a statistical comparison of the CRS-R subscales weighted by MBT became significantly predictive for DOC outcome (p<0.02). The association of MBT and CRS-R scoring improves significantly the evaluation of consciousness and the predictability of outcome in the acute phase. Subtle motor behaviour assessment provides accurate insight into the amount and the content of consciousness even in the case of cognitive motor dissociation

    A time discretization scheme for a nonlocal degenerate problem modelling resistance spot welding

    Get PDF
    This is the author's PDF version of an article published in Mathematical Modelling of Natural Phenomena© 2015. The definitive version is available at http://www.mmnp-journal.org/articles/mmnp/abs/2015/06/mmnp2015106p90/mmnp2015106p90.htmlIn the current work we construct a nonlocal mathematical model describing the phase transition occurs during the resistance spot welding process in the industry of metallurgy. We then consider a time discretization scheme for solving the resulting nonlocal moving boundary problem. The scheme consists of solving at each time step a linear elliptic partial differential equation and then making a correction to account for the nonlinearity. The stability and error estimates of the developed scheme are investigated. Finally some numerical results are presented confirming the efficiency of the developed numerical algorithm

    Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models

    Full text link

    Ueber Vertilgung der Ackerunkräuter

    No full text
    In Fraktu

    Control of FES-assisted gait training after stroke using inertial sensors

    No full text
    An inertial sensor mounted on the foot of the affected body side represents an alternative to traditional foot switches in Functional Electrical Stimulation (FES)-assisted gait rehabilitation systems. Besides being used to detect gait phases, the inertial sensor can be used to estimate orientation and linear position of the foot. In this paper we describe a practical system for FES-assisted gait training based on inertial sensors where the electrical stimulation is triggered by the gait phase detection. Furthermore, the maximal angle between foot and ground obtained from the inertial sensor was used as feedback on a step to step basis for controlling the stimulation intensity of the tibialis anterior. The feasibility of this control concept was experimentally proven for one drop foot patient
    corecore