677 research outputs found

    Structure and dynamics of binary liquid mixtures near their continuous demixing transitions

    Get PDF
    The dynamic and static critical behavior of five binary Lennard-Jones liquid mixtures, close to their continuous demixing points (belonging to the so-called model H' dynamic universality class), are studied computationally by combining semi-grand canonical Monte Carlo simulations and large-scale molecular dynamics (MD) simulations, accelerated by graphic processing units (GPU). The symmetric binary liquid mixtures considered cover a variety of densities, a wide range of compressibilities, and various interactions between the unlike particles. The static quantities studied here encompass the bulk phase diagram (including both the binodal and the λ\lambda-line), the correlation length, the concentration susceptibility, the compressibility of the finite-sized systems at the bulk critical temperature TcT_c, and the pressure. Concerning the collective transport properties, we focus on the Onsager coefficient and the shear viscosity. The critical power-law singularities of these quantities are analyzed in the mixed phase (above TcT_c) and non-universal critical amplitudes are extracted. Two universal amplitude ratios are calculated. The first one involves static amplitudes only and agrees well with the expectations for the three-dimensional Ising universality class. The second ratio includes also dynamic critical amplitudes and is related to the Einstein--Kawasaki relation for the interdiffusion constant. Precise estimates of this amplitude ratio are difficult to obtain from MD simulations, but within the error bars our results are compatible with theoretical predictions and experimental values for model H'. Evidence is reported for an inverse proportionality of the pressure and the isothermal compressibility at the demixing transition, upon varying either the number density or the repulsion strength between unlike particles.Comment: 15 pages, 12 figure

    Long-Wavelength Anomalies in the Asymptotic Behavior of Mode-Coupling Theory

    Full text link
    We discuss the dynamic behavior of a tagged particle close to a classical localization transition in the framework of the mode-coupling theory of the glass transition. Asymptotic results are derived for the order parameter as well as the dynamic correlation functions and the mean-squared displacement close to the transition. The influence of an infrared cutoff is discussed.Comment: 15 pages, 8 figures, to appear in J Phys Condens Matte

    Enhanced wavelength-dependent surface tension of liquid-vapour interfaces

    Full text link
    Due to the simultaneous presence of bulk-like and interfacial fluctuations the understanding of the structure of liquid-vapour interfaces poses a long-lasting and ongoing challenge for experiments, theory, and simulations. We provide a new analysis of this topic by combining high-quality simulation data for Lennard-Jones fluids with an unambiguous definition of the wavenumber-dependent surface tension γ(q)\gamma(q) based on the two-point correlation function of the fluid. Upon raising the temperature, γ(q)\gamma(q) develops a maximum at short wavelengths. We compare these results with predictions from density functional theory. Our analysis has repercussions for the interpretation of grazing-incidence small-angle X-ray scattering (GISAXS) at liquid interfaces

    Large quantum dots with small oscillator strength

    Full text link
    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size and predict a very large oscillator strength due to Coulomb effects. This is in stark contrast to the measured oscillator strength, which turns out to be much below the upper limit imposed by the strong confinement model. We attribute these findings to exciton localization in local potential minima arising from alloy intermixing inside the quantum dots.Comment: 4 pages, 3 figures, submitte

    Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy

    Get PDF
    The diffusion of macromolecules in cells and in complex fluids is often found to deviate from simple Fickian diffusion. One explanation offered for this behavior is that molecular crowding renders diffusion anomalous, where the mean-squared displacement of the particles scales as r2tα\langle r^2 \rangle \propto t^{\alpha} with α<1\alpha < 1. Unfortunately, methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) probe diffusion only over a narrow range of lengthscales and cannot directly test the dependence of the mean-squared displacement (MSD) on time. Here we show that variable-lengthscale FCS (VLS-FCS), where the volume of observation is varied over several orders of magnitude, combined with a numerical inversion procedure of the correlation data, allows retrieving the MSD for up to five decades in time, bridging the gap between diffusion experiments performed at different lengthscales. In addition, we show that VLS-FCS provides a way to assess whether the propagator associated with the diffusion is Gaussian or non-Gaussian. We used VLS-FCS to investigate two systems where anomalous diffusion had been previously reported. In the case of dense cross-linked agarose gels, the measured MSD confirmed that the diffusion of small beads was anomalous at short lengthscales, with a cross-over to simple diffusion around 1 μ\approx 1~\mum, consistent with a caged diffusion process. On the other hand, for solutions crowded with marginally entangled dextran molecules, we uncovered an apparent discrepancy between the MSD, found to be linear, and the propagators at short lengthscales, found to be non-Gaussian. These contradicting features call to mind the "anomalous, yet Brownian" diffusion observed in several biological systems, and the recently proposed "diffusing diffusivity" model

    (In,Ga)As/GaP electrical injection quantum dot laser

    Get PDF
    The paper reports on the realization of multilayer (In,Ga)As/GaP quantum dot (QD) lasers grown by gas source molecular beam epitaxy. The QDs have been embedded in (Al,Ga)P/GaP waveguide structures. Laser operation at 710 nm is obtained for broad area laser devices with a threshold current density of 4.4 kA/cm2 at a heat-sink temperature of 80 K.Publisher PDFPeer reviewe

    Spin multistability of cavity polaritons in a magnetic field

    Full text link
    Spin transitions are studied theoretically and experimentally in a resonantly excited system of cavity polaritons in a magnetic field. Weak pair interactions in this boson system make possible fast and massive spin flips occurring at critical amplitudes due to the interplay between amplitude dependent shifts of eigenstates and the Zeeman splitting. Dominant spin of a condensate can be toggled forth and back by tuning of the pump intensity only, which opens the way for ultra-fast spin switchings of polariton condensates on a picosecond timescale.Comment: 4 pages, 4 figure

    Modally Resolved Fabry-Perot Experiment with Semiconductor Waveguides

    Get PDF
    Based on the interaction between different spatial modes, semiconductor Bragg-reflection waveguides provide a highly functional platform for non-linear optics. Therefore, the control and engineering of the properties of each spatial mode is essential. Despite the multimodeness of our waveguide, the well-established Fabry-Perot technique for recording fringes in the optical transmission spectrum can successfully be employed for a detailed linear optical characterization when combined with Fourier analysis. A prerequisite for the modal sensitivity is a finely resolved transmission spectrum that is recorded over a broad frequency band. Our results highlight how the features of different spatial modes, such as their loss characteristics and dispersion properties, can be separated from each other allowing their comparison. The mode-resolved measurements are important for optimizing the performance of such multimode waveguides by tailoring the properties of their spatial modes.Comment: 8 pages, 7 figure
    corecore