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The dynamic and static critical behavior of a family of binary Lennard-Jones liquid mixtures, close
to their continuous demixing points (belonging to the so-called model H ′ dynamic universality
class), are studied computationally by combining semi-grand canonical Monte Carlo simulations and
large-scale molecular dynamics (MD) simulations, accelerated by graphic processing units (GPU).
The symmetric binary liquid mixtures considered cover a variety of densities, a wide range of
compressibilities, and various interactions between the unlike particles. The static quantities studied
here encompass the bulk phase diagram (including both the binodal and the λ-line), the correlation
length, and the concentration susceptibility, of the finite-sized systems above the bulk critical temper-
ature Tc, the compressibility and the pressure at Tc. Concerning the collective transport properties,
we focus on the Onsager coefficient and the shear viscosity. The critical power-law singularities of
these quantities are analyzed in the mixed phase (above Tc) and non-universal critical amplitudes
are extracted. Two universal amplitude ratios are calculated. The first one involves static amplitudes
only and agrees well with the expectations for the three-dimensional Ising universality class. The
second ratio includes also dynamic critical amplitudes and is related to the Einstein–Kawasaki
relation for the interdiffusion constant. Precise estimates of this amplitude ratio are difficult to
obtain from MD simulations, but within the error bars our results are compatible with theoretical
predictions and experimental values for model H ′. Evidence is reported for an inverse proportion-
ality of the pressure and the isothermal compressibility at the demixing transition, upon varying
either the number density or the repulsion strength between unlike particles. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4963771]

I. INTRODUCTION

Upon approaching continuous phase transitions at Tc, the
order parameter fluctuations with long wavelengths become
prevalent.1,2 This is accompanied by the unlimited increase
of the bulk correlation length ξ(τ → 0±) ≃ ξ±0 |τ |−ν, where
τ = (T − Tc)/Tc is the reduced temperature and ν is one of
the standard bulk critical exponents. The coefficients ξ±0 are
per se non-universal amplitudes but they form a universal
ratio ξ+0 /ξ

−
0 . This divergence of ξ leads to singularities in

and scaling behavior of various thermodynamic and transport
properties, commonly known as critical phenomena.1–6 Close
to Tc and in line with renormalization group theory7 the
corresponding critical exponents and scaling functions turn
out to be universal, i.e., they depend only on gross features
such as the spatial dimension d, the symmetry of the
order parameter, the range of interactions, and hydrodynamic
conservation laws, forming universality classes. Binary liquid
mixtures, exhibiting second order demixing transitions, serve
as experimentally particularly suitable representatives of the
corresponding Ising universality class (see, e.g., Refs. 5, 8,
and 9). Besides probing critical phenomena as such, recently
these critical demixing transitions in confined binary liquid

a)sutapa@is.mpg.de

mixtures have gained significant renewed attention in the
context of critical Casimir forces10 and of non-equilibrium
active Brownian motion of colloidal particles, driven by
diffusiophoresis in binary liquid solvents.11

Static critical phenomena in binary liquid mixtures
are rather well understood and reported in the literature,
encompassing theory,1–5 experiments (see, e.g., Refs. 8, 9,
and 12), and computer simulations (see, e.g., Refs. 13–16).
Comparatively, much less is known about their dynamic
properties. In particular, simulation studies of dynamic critical
phenomena are very recent and scarce. So far, most of
the computational studies of critical transport properties in
binary liquid mixtures have been focused on a specific and
single, highly incompressible fluid. However, probing the
concept of universality and its onset for these kind of systems
requires simulations of various distinct binary liquid mixtures.
In order to alleviate this dearth, we have performed MD
simulations concerning the universal critical behavior3–6 of
several static and dynamic quantities, for a family of five
symmetric binary liquid mixtures. The fluids considered here
exhibit distinct number densities ϱ and compressibilities and
cover a broad range of critical temperatures. Inter-alia, this
allows us to investigate the density dependence of certain
critical amplitudes which together with critical exponents
determine the qualitative importance of the corresponding

0021-9606/2016/145(13)/134505/15/$30.00 145, 134505-1 Published by AIP Publishing.
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critical singularities. Besides the interest in them in its
own right, critical amplitudes play an important role for
the dynamics of critical Casimir forces,17 the understanding
of which is still in an early stage. MD simulations of this
phenomenon in critical binary liquid mixtures become feasible
if the model permits a large bulk correlation length combined
with low bulk values of the critical pressure and viscosity.
Similarly, the compilation of non-universal critical amplitudes,
which has been obtained from our study, will also be beneficial
for future simulation studies involving the demixing of binary
liquids, for which one can then select the most appropriate
fluid model.

We briefly summarize the critical behavior of static and
dynamic properties in the context of liquid mixtures in order
to facilitate the understanding of the results presented below.
The crucial feature of the static critical phenomena is the
unlimited increase of the aforementioned correlation length
ξ, which is a measure of the spatial extent of a typical
order parameter fluctuation. In a binary liquid mixture, the
order parameter for a demixing transition is the deviation of
the local concentration from its critical value whereas for a
liquid–vapor transition the order parameter is the deviation
of the local number density from its critical value. The static
critical singularities obey power laws

ϕ(τ → 0−) ≃ ϕ0|τ |β, ξ ≃ ξ±0 |τ |−ν,
χ ≃ χ±0 |τ |−γ, CV ≃ A±|τ |−α, (1)

where ϕ, χ, and CV are the order parameter, the susceptibility,
and the specific heat at constant volume, respectively. For
the three-dimensional (3d) Ising universality class, the static
critical exponents are known to high accuracy5

α ≈ 0.110, β ≈ 0.325, γ ≈ 1.239, and ν ≈ 0.630. (2)

Any two of these exponents are independent; all remaining
ones follow from scaling relations2 such as

α + 2β + γ = 2 and νd = 2 − α, (3)

where d is the spatial dimension. The critical amplitudes, on
the other hand, are non-universal and depend on whether Tc

is approached from above or from below. However, certain
ratios of the critical amplitudes, such as ξ+0 /ξ

−
0 and χ+0/χ

−
0 ,

are known to be universal.4,12

Dynamic critical phenomena are governed by the
relaxation time tR which diverges upon approaching Tc as

tR ∼ ξz, (4)

leading to critical slowing down.3 This entails thermal
singularities in various collective transport coefficients,6

e.g., the mutual diffusivity Dm (also called interdiffusivity)
and the shear viscosity η̄,

Dm ∼ ξ−xD and η̄ ∼ ξ xη. (5)

The dynamic critical exponents z, xD, and xη satisfy scaling
relations as well,3,6

xD = d − 2 + xη and z = d + xη, (6)

leaving scope for only one independent dynamic critical
exponent. In the case of a liquid–vapor transition, the quantity

analogous to Dm is the thermal conductivity DT , bearing the
same critical exponent as τ → 0.

Transport mechanisms in near-critical fluids have to
respect hydrodynamic conservation laws, specifically for
mass, momentum, and internal energy. The dynamics of
one-component fluids undergoing a liquid–vapor transition
is described by the so-called model H ,6,18 which incorporates
the conservation of a scalar order parameter and of the
transverse part of the momentum current. The asymptotic
behaviors for τ → 0 of the thermal conductivity and of the
shear viscosity in model H have been well studied and the
corresponding critical exponents for this universality class
are known.6 A binary liquid mixture, on the other hand, can
exhibit two kinds of transitions: liquid–vapor transitions at
plait points and demixing transitions at consolute points. The
reason is that there are two conserved scalar fields, viz.,
the concentration field and the density field. The critical
dynamics in binary liquid mixtures is thus classified as model
H ′.6 The transport properties exhibit different features at
the consolute and the plait points;19 for example, for τ → 0
the thermal conductivity remains finite at consolute points,
but diverges at plait points.19,20 Moreover, the corresponding
behaviors in the non-asymptotic regime are quite different as
well. However, in the asymptotic regimes the leading critical
exponents (including the dynamic ones) at the consolute
points of a binary mixture are the same as the ones for a one-
component fluid.6 The to date best estimate for xη ≈ 0.068
in d = 3 was obtained within a self-consistent mode-coupling
approximation for a one-component fluid21 and is in agreement
with previous theoretical calculations;4,19,22–25 it is also
corroborated by experiments on xenon near its liquid–vapor
critical point.26 By virtue of universality and using Eq. (6),
this implies for the dynamic critical exponents of model H ′

in d = 3,6

xη ≈ 0.068, xD ≈ 1.068, and z ≈ 3.068. (7)

The presence of density as a secondary fluctuating field, which
is coupled to the order parameter field (i.e., the concentration)
through some constraint [cf. Eq. (18)], generally raises the
question whether Fisher renormalization27 has to be accounted
for. For the present study of symmetric binary mixtures, we
have no indications that this is the case, but this issue deserves
further theoretical investigation.

Compared with the large body of research on static
critical phenomena, there are relatively few studies on
dynamic critical phenomena. Concerning theory, they are
performed mainly by using mode-coupling theory (MCT)28,29

or dynamic renormalization group theory (RGT)30,31 (see
Refs. 6 and 32 for recent reviews). In parallel to that, the
phenomenological dynamic scaling formalism33 has also
been used extensively. There are important experimental
observations (see, e.g., Refs. 9, 26, 34, and 35) which have
pushed the development of this field of research. Computer
simulations of dynamic critical phenomena in fluids36–39

started only a decade ago. The first MD simulation36 aiming
at the critical singularities in the fluid transport quantities
was performed in 2004. Although this study produced
the correct values of the static critical exponents for the
susceptibility and the correlation length, the reported critical
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exponent for the interdiffusivity was in disagreement with
theoretical predictions. There are numerical studies40,41 of
shear and bulk viscosities close to the liquid–vapor transitions
of one-component fluids too, but, without characterizing
quantitatively their critical singularities. The first quantitative
determinations of critical exponents and amplitudes for
transport in fluids—being in accordance with MCT, dynamic
RGT, and experiments—were performed by Das et al. by
using MD simulations.38,42,43 Applying finite-size scaling
theory,44 the critical singularities of the shear viscosity, of
the Onsager coefficient, and of the mutual diffusivity were
determined. Along these lines, the critical divergence of the
bulk viscosity was determined recently39,45 for a demixing
phase transition. In this context, we are aware of only
one simulation study37 of the dynamic critical exponents
associated with liquid–vapor transitions (model H). These MD
simulations and also the present one have been carried out in
the mixed phase, i.e., approaching Tc from above (for an upper
critical demixing point). To the best of our knowledge, there
are no computational investigations of the critical transport
in binary liquid mixtures approaching Tc from below. The
latter ones are complicated by non-standard finite-size effects
changing the location of the binodals,45 along which the
transport quantities have to be calculated. Simulations below
Tc could shed light on apparently contradictory theoretical
predictions concerning critical amplitude ratios,22,32 for which
there is also a lack of experimental data.

Simulations of dynamic critical phenomena face partic-
ular challenges such as, inter-alia, critical slowing down,22 and
finite-size effects. While upon increasing the system size finite-
size effects become less pronounced, the critical slowing down
(tR ∼ ξz ∼ τ−νz → ∞) causes simulations of large systems to
become expensive due to increasing equilibration times. This
leads to noisy simulation data for any transport property near
criticality at which large scale fluctuations are unavoidable
and thus make the determination of critical singularities
very difficult. This problem is even more pronounced for
quantities associated with collective dynamics, such as the
shear viscosity, which lack the self-averaging of tagged-
particle quantities. Critical slowing down also manifests itself
in long-time tails of the Green-Kubo correlators of transport
quantities. In particular, for the bulk viscosity, this has been
demonstrated39,40,45 to make the computation notoriously
difficult. Moreover, there are also technical hurdles concerning
the temperature control46,47 during long MD runs near Tc. One
way of dealing with these problems is to carry out MD
simulations of smaller systems and then to apply a finite-size
scaling analysis, as done in Refs. 38, 39, 42, and 45. In the
present study, we deal with huge system sizes such that the
use of finite-size scaling is less important for determining the
relevant critical singularities.

This study is organized such that in Section II the
family of fluid models considered here and the simulation
methodologies are described. Section III contains the
simulation results for the phase diagrams. The computational
observations for structural quantities and transport coefficients
are reported in Sections IV and V, respectively, and compared
with available theoretical and experimental predictions.
Results for universal amplitude ratios are discussed in

Section VI. Finally, Section VII provides a detailed summary
and perspectives.

II. MODELS AND METHODS

A. Models

As model fluids, we have considered binary mixtures of
A and B particles, which interact via the Lennard-Jones (LJ)
pair potential

uLJ(r; ε,σ) = 4ε
�(σ/r)12 − (σ/r)6� . (8)

Particles of species α, β ∈ {A,B} have different interaction
strengths εαβ, while for reasons of simplicity all particles have
the same diameter σ and mass m. The actually employed pair
potentials are

uαβ(r) =

uLJ
αβ(r; εαβ,σ) − uLJ

αβ(rc; εαβ,σ)


f
( r − rc

h

)
, (9)

where the potential is smoothly truncated at a suitable cut-off
distance rc for computational benefits such that the pair force
is still continuously differentiable at r = rc. We used the
smoothing function f (x) = x4θ(−x)/�1 + x4�, where θ is the
Heaviside step function.48,49 A small value of h = 0.005σ
is sufficient to ensure very good numerical stability with
respect to conservation laws during long MD runs,50 which
is indispensable for the study of the critical dynamics of
molecular fluids.

Throughout, we have used cubic simulation boxes of
edge length L and volume V = L3 with periodic boundary
conditions applied along all Cartesian directions. The
total number density ϱ = N/V is kept constant, where N
= NA + NB is the total number of particles and Nα is the
number of particles of species α. With this, the concentration is
defined as xα = Nα/N . We adopt εAA = ε as the unit of energy.
In turn this sets the dimensionless temperature T∗ = kBT/ε.
For the choice εAA = εBB the binary liquid mixture is
symmetric. This symmetry leads to several computational
advantages concerning the calculation of the phase diagram15

and improves the statistics of single-particle averages. The
various fluids considered here are specified by their set of
parameters (εAB, rc, ϱ) to be described next.

As to model I, we choose

rc,αβ = 2.5σ, εAA = εBB = ε, εAB =
ε

2
, (10)

and study various number densities ϱ. In model II, we
set rc,αα = 2.5σ for like-particle interactions (α = β) and
rc = 21/6σ otherwise, such that the unlike particles interact
via the purely repulsive Weeks–Chandler–Andersen (WCA)
potential.51 For this model, we fix

ϱσ3 = 0.8, εAA = εBB = ε, (11)

and keep εAB/ε as a tunable interaction parameter. Model II is
inspired by the Widom–Rowlinson mixture,52 the dynamics of
which has been the subject of a recent simulation study.36 The
Lennard-Jones potential [Eq. (8)], and certainly its truncated
form [Eq. (9)], decays faster than r−(d+2) as r → ∞ for d = 3,
which justifies that the critical singularities of static bulk
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properties belong to the universality class of 3d Ising models
with short-ranged interactions.

B. Semi-grand canonical Monte Carlo
simulation (SGMC)

The phase diagram and the static susceptibility χ are
calculated using the semi-grand canonical Monte Carlo
(SGMC) simulations.15 Within SGMC, the total particle
number N is kept constant, while xA and xB fluctuate.
The implementation of the simulation consists of two Monte
Carlo (MC) moves: particle displacement and an identity
switch A
 B. Due to the identity switch also the chemical
potential difference ∆µ = µA − µB for the two species enters
into the Boltzmann factor. However, for symmetric binary
liquid mixtures the coexistence curve below Tc is given by
∆µ = 0. Accordingly, it is natural to collect the simulation
data above Tc also for ∆µ = 0, which implies that the field
conjugate to the demixing order parameter is zero. During
the SGMC runs, the concentration xA has been recorded
at sufficiently large intervals of 104 MC steps, so that
subsequent samples are approximately independent of each
other. For L = 27 and ϱσ3 = 1.0, the fluid mixture has been
equilibrated over 3 × 106 MC steps. The attempted particle
displacements have been chosen uniformly from the cube
[−σ/20,σ/20] × [−σ/20,σ/20] × [−σ/20,σ/20].

In the SGMC simulation the concentrations xA and xB
fluctuate. Therefore the order parameter field φ B (xA − xB)/2
is not conserved, but the total number density field is
conserved. Accordingly, the SGMC dynamics is classified
as the so-called model C with a scalar order parameter6 and is
associated with a dynamic exponent zSGMC = 2 + α/ν ≈ 2.175
for d = 3 (see Table 3 in Ref. 6). On the other hand, if one
performs MC simulations in the canonical ensemble (NA, NB,
V , and T fixed) with rules such that the order parameter is
conserved locally—in addition to a conserved density—the
dynamics corresponds to model D. It has been shown that
the dynamic exponent z for model D is the same as for
model B (z = 4 − η ≈ 3.964).6,53 Note that both model B
and D correspond to a locally conserved order parameter
field, with an additional non-critical conserved density field
present in model D. Due to a much smaller value of z, MC
simulations for model C are computationally faster and more
advantageous than for model D. However, the issue of MC
simulations in the canonical ensemble with an only globally
(not locally) conserved order parameter field, in the presence
of a conserved density field, requires further investigations.

C. Molecular dynamics simulation

Transport quantities have been calculated by using MD
simulations,46,54 which solve Newton’s equations of motion
for the fluid particles within the microcanonical ensemble
(NA,NB,V , total momentum, and total energy E fixed).
Simulations of critical dynamics are intrinsically difficult due
to both critical slowing down and finite-size effects.15,22 Even
more so, the study of collective transport requires a sufficient
separation of length scales (σ ≪ ξ ≪ L). Therefore, we have
performed simulations of very large system sizes (L 6 50σ)

containing up to N = 87 500 particles with the trajectories
spanning more than 104t0 in time, with t0 =


mσ2/ε, which

is at the high end of the present state of the art.
Such demanding computations have become feasible only

recently based on the highly parallel architecture of so-
called GPU (graphic processing units) accelerators, which are
specialized on streaming numerical computations of large data
sets in parallel. The success of GPU computing in the realm
of MD simulations55 has stimulated the development of GPU
implementations for more advanced algorithms,56 and today
such accelerator hardware is often part of new installations
in high-performance computing centers. Specifically, we have
used the software HAL’s MD package (version 1.0),50,57 which
is a high-precision molecular dynamics package for large-
scale simulations of complex dynamics in inhomogeneous
liquids. The implementation achieves excellent conservation
of energy and momentum at high performance by using an
increased floating-point precision where necessary.50,58 The
software minimizes disk usage by the in situ evaluation
of thermodynamic observables and dynamic correlation
functions and by writing structured, compressed, and portable
H5MD output files.59 Concerning the performance of the
package, it has been shown to reliably reproduce the slow
glassy dynamics of the Kob–Andersen mixture,50 and it was
used recently to shed new light on the structure of liquid–vapor
interfaces.60

For the thermalization of the initial state, we have used a
Nosé–Hoover thermostat (NHT) chain46,61 with an integration
time step of δt = 0.002t0. We note that NHT dynamics has
recently been demonstrated47 to generate critical transport
in binary liquid mixtures within the universality class of
model H ′. We have applied the following equilibration
procedure: (i) Generate an initial lattice configuration with
the desired particle numbers NA,NB, and the volume V such
that the two species of the particles are randomly assigned
and that the total momentum is zero. (ii) Melt this lattice
at the temperature 2T for 100t0 using the NHT and further
equilibrate it at T ; typical run lengths are t = 104t0 for L = 42σ
and ϱσ3 = 1.0. (iii) Determine the average internal energy U
at T from the previous NHT run and rescale the particle
velocities such that the instantaneous total energy matches
U . The resulting system state is used to compute transport
quantities in a production run at fixed total energy, employing
the velocity Verlet algorithm with an integration time step
of δt = 0.001t0. For model II with εAB/ε = 1 we have used
δt = 0.0005t0. These choices for δt result in a relative energy
drift of less than 2 × 10−5 in 1.5 × 107 steps.

D. Data acquisition and statistics

All results presented in the following correspond to
the critical composition xc = 1/2 and T∗ ≥ T∗c . Unless
stated otherwise, static quantities are all averaged over 20
independent initial configurations and for dynamic quantities
this number is 30. During the production runs in the NVE
ensemble (i.e., NA, NB, V , and E constant), data are recorded
over a time span of t = 15 000 t0. For example, the computing
time for a system trajectory of 74 088 particles over 1.5 × 107

steps, using a single Tesla K20Xm GPU (NVIDIA Corp.),
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was 7.1 h at the wall clock, including the evaluation of static
and dynamic correlations.

III. PHASE DIAGRAMS

From the SGMC simulations we have obtained the
demixing phase diagrams for the 5 fluids studied. For
each fluid, the probability density P(xA) of the fluctuating
concentration xA of A particles has been determined at
various dimensionless temperatures T∗ above and below
the anticipated demixing point; P(xA) is normalized: 1

0 P(xA) dxA = 1. In a finite system of linear size L
with periodic boundary conditions along all directions, the
critical transition is shifted and rounded, following the
finite-size scaling relation44 Tc(L → ∞) − Tc ∼ L−1/ν. In our
simulations, we have used large values for L so that the
finite-size effects are sufficiently small. The inset of Fig. 1
shows results for P(xA) for model I with ϱσ3 = 0.7 and
for two representative temperatures: P(xA) shows a single
peak above T L

c and assumes a double-peak structure below
T L
c . These peaks of P(xA) correspond to equilibrium states

because, up to an xA-independent constant, the free energy
is given by −kBT log(P(xA)). Accordingly, the two peaks of
equal height indicate the coexistence of an A- and a B-rich
phase below T L

c . Due to the symmetry of the binary liquid
mixtures, one has P(xA) = P(1 − xA), which we have imposed
on the data for P(xA). By construction, the critical composition
is xA,c = xB,c = xc = 1/2 for all the models considered by us
here.

FIG. 1. Demixing phase diagrams in the xA–T ∗ plane for binary liquid
mixtures within model I for 3 number densities ϱ [xA= NA/(NA+NB) and
T ∗= kBT /ε with ε = εAA]. Open symbols indicate co-existing equilibrium
states obtained from SGMC simulations. Solid lines are fits to these data
yielding estimates for Tc(ϱ) (see the main text), and crosses mark the critical
points (xc = 1/2,Tc). The chosen system sizes are L = 27σ, 29σ, and 30σ
for ϱσ3= 1.0, 0.8, and 0.7, respectively. In all cases, the statistical errors do
not exceed the symbol sizes. The inset shows the probability density P(xA)
for model I at ϱσ3= 0.7, L = 30σ, and two values of T ∗.

Accordingly, the fluctuating order parameter is given by
φ = xA − 1/2, from which we have calculated the mean order
parameter ϕ as

ϕ = ⟨|φ|⟩ =
 1

0

�
xA − 1/2

�
P(xA) dxA. (12)

Below Tc, where ϕ > 0, the binodal is given by the coexisting
concentrations x(1,2)A (T) = 1/2 ± ϕ(T). The results are shown
in Fig. 1, and one expects that they follow the asymptotic
power law

ϕ(T ↗ Tc) ≃ ϕ0 |T/Tc − 1| β, (13)

which defines also the amplitude ϕ0. However, deviations
are expected to occur for T very close to Tc due to the
finite-size effects mentioned before.39,62 For each of the 5
fluids studied, Tc and ϕ0 have been estimated via fits of
Eq. (13) to the data, with β = 0.325 fixed [Eq. (2)]. Ideally,
all three parameters (ϕ0, β, Tc) can be obtained from a
single fit procedure as described above. However, trying
to extract an unknown exponent close to Tc from data for
finite-sized systems is a delicate task which usually leads to
large uncertainties. Already for the extraction of ϕ0 and Tc

alone one has to choose the fit range judicially: data points
very close to Tc suffer from finite-size effects, while the
asymptotic law is not expected to hold at temperatures far
away from Tc. Exemplarily for ϱσ3 = 0.7, we have chosen
xA ∈ (0.2,0.4). Note that the power law in Eq. (13) provides a
good description of the binodal even at the lowest temperatures
investigated.

We have refined the estimates for Tc with Binder’s
cumulant intersection method.13,14 It is based on the
dimensionless cumulant

UL(T) = 1 −


φ4�

3


φ2
�2 , (14)

which interpolates between the limiting values UL(T → 0)
= 2/3 and UL(T → ∞) = 0 and, at Tc, it attains a universal
value UL(Tc) for sufficiently large L. Plotting UL(T) vs. T for
various system sizes L, the set of curves exhibits a common
point of intersection, from which one infers an accurate
estimate for Tc. This is demonstrated in Fig. 2, showing a
family of intersecting curves UL(T) for model I with ϱσ3 = 0.7
and for three values of L. The figure corroborates the critical
value14 UL(Tc) ≈ 0.4655 for the Ising universality class, from
which we read off T∗c = 1.5115 ± 0.0008.

The main results for all 5 fluids studied here have been
compiled in Table I. For model II, we have found much higher
values for Tc than for model I. This can be understood as
follows. The AA and BB interaction potentials are identical
both within and between the two models, which differ only
with respect to the AB interaction potential. Upon construction
[see Eq. (9)], the AB interaction is more repulsive in model II
than in model I (uII

AB is purely repulsive whereas uI
AB exhibits

also an attractive part). A repulsive AB interaction favors the
formation of domains rich in A and of domains rich in B and
thus promotes demixing, which leads to a higher value of Tc.
Within model II, increasing εAB makes uII

AB more repulsive and
thus renders the same trend. In particular, increasing within
model II the attraction strength εAB by a factor of 4 yields
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FIG. 2. Binder cumulant UL(T ) [Eq. (14)] for model I with ϱσ3= 0.7 and
for 3 values of L. The solid lines are interpolating weighted splines and
the dashed lines mark the common intersection point. The inset provides an
enlarged view of the neighbourhood of the intersection point at T ∗c.

a 1.7-fold increase of Tc. The binodal for model II with
εAB/ε = 1 (but uαα truncated at rc/σ = 4.2) was determined
in Ref. 63, and the rough estimate of Tc there agrees with our
result. Model I was studied by Das et al.62 for ϱσ3 = 1.0, but
using sharply truncated interaction potentials [ f (x) ≡ θ(−x)
in Eq. (9)]. They found T∗c = 1.638 ± 0.005, which is very
close to our result T∗c = 1.635 ± 0.003, however different
from T∗c ≈ 1.423 as obtained for the force-shifted potentials

used in Ref. 42. The respective similarities and differences
in the critical temperatures appear because the smoothing
function f (x) alters uαβ(r) only marginally in the vicinity
of rc, unlike the force shift which amounts to modify the
interaction potentials globally. Within model I, the amplitude
ϕ0 of the order parameter is, within the accuracy of our data,
insensitive to the density ϱ (see Table I). Within model II, ϕ0
changes only slightly upon increasing the strength εAB of the
repulsion.

The dependence of the demixing transition on the total
number density ϱ gives rise to a line Tc(ϱ) of critical points,
known as the λ-line (Fig. 3). For model I, we have found
that Tc(ϱ) is an increasing function for ϱσ3 . 0.9; for higher
densities, it decreases. Such a non-monotonic dependence
implies a re-entrance phenomenon: increasing the density
isothermally, the binary liquid mixture undergoes a phase
transition from a mixed state at low density to a phase-
separated one and mixes again at high densities. One may
speculate that such a behavior can be rationalized by the
non-monotonicity of the internal energy as a function of
density, which arises from the non-monotonic form of the
pair potential. However, this proposition calls for further
computational studies using various kinds of like and unlike
particle interactions.

The initial increase of Tc(ϱ) is in qualitative agreement
with a previous grand-canonical MC study64 using a variant of
our model I (εAB = 0.7εAA). For this choice of the interaction
potentials, it was found that the λ-line ends at a critical end
point near ϱσ3 ≈ 0.59, where the λ-line hits the first-order
liquid–vapor transition of the fluid. It was suggested64 that
upon decreasing εAB further the critical end point moves

TABLE I. Simulation results for the five binary fluids investigated here along with results from Ref. 42: values
of the critical temperature Tc and of the pressure Pc, the internal energy Uc [Eq. (16)], and the isothermal
compressibility κc at the critical point; further, the critical amplitudes of the correlation length ξ0 [Eq. (21)], of
the order parameter ϕ0, and of the static susceptibility χ0 [Eq. (21)], as well as of the shear viscosity η0 [Eqs. (33)
and (34)] and the Onsager coefficient L0 [ Eqs. (26)–(28)]. The amplitudes Dm,0 of the interdiffusion constant
have been computed from Eq. (32). Finally, the values of two universal ratios of static and dynamic amplitudes,
R+ξR

−1/d
c and RD [see Eqs. (38) and (39), respectively], are reported. Numbers in parentheses indicate the

uncertainty in the last digit(s).

Model I Model II Reference 42

ϱσ3 0.7 0.8 1.0 0.8 0.8 1.0
εAB/ε 1/2 1/2 1/2 1/4 1 1/2
rc,AB/σ 2.5 2.5 2.5 21/6 21/6 2.5+ force shift

T ∗c 1.5115(8) 1.629(1) 1.635(3) 2.608(2) 4.476(2) 1.4230(5)
P∗c 2.58(5) 4.81(3) 12.70(4) 8.29(5) 16.31(6)
Uc/ε −0.617(3) −0.584(3) −0.572(4) 2.643 (4) 6.557(6)
κ∗c 0.11(4) 0.05(3) 0.02(3) 0.04(4) 0.02(4)

ϕ0 0.76(2) 0.77(2) 0.745(16) 0.77(3) 0.70(2) 0.765(25)
χ∗0 0.157(9) 0.112(7) 0.068(4) 0.056(4) 0.06(2) 0.076(6)
ξ0/σ 0.53(3) 0.47(2) 0.42(2) 0.45(3) 0.53(2) 0.395(25)
R+ξ R

−1/d
c 0.71(7) 0.70(6) 0.72(6) 0.72(8) 0.65(9) 0.69(8)

η∗0 1.46(10) 3.63(10) 1.35(5) 1.80(7) 3.87(30)
L∗0 0.0143(5) 0.0082(4) 0.0024(3) 0.0049(4) 0.0032(4) 0.0028(4)
L∗b,0 0.0082(7) 0.0040(6) 0.0028(4) 0.0025(5) 0.0013(7) 0.0033(8)
D∗

m,0 0.091(8) 0.073(6) 0.035(5) 0.088(7) 0.053(6) 0.037(8)
RD 0.95(17) 0.993(21) 1.00(21) 0.96(25) 1.06(40)
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FIG. 3. Loci of the critical points Tc(ϱ) for the demixing transition in the
ϱ–T ∗ plane with T ∗= kBT /ε, obtained from SGMC simulations for model I.
The solid line is an interpolating weighted spline. For details of the interaction
potentials, see the main text and Table I. Error bars are smaller than the
symbol sizes.

towards the line of liquid–vapor critical points until both
lines of critical points meet for εAB ≈ 0.6εAA and form
a tri-critical point, as observed in a two-dimensional spin
model.16 The determination of the full phase diagrams of
binary liquid mixtures, encompassing the complete λ-line, the
line of liquid–vapor critical points, and the solid phases, is a
non-trivial and computationally demanding task (for density
functional approaches in this direction see Refs. 65–67). It
remains as an open question whether there is a tri-critical
point in model I (εAB = 0.5εAA) or not (see below for further
discussions).

For completeness, Table I also lists the critical values for
the dimensionless pressure P∗c = Pcσ

3/ε at the respective
demixing points, which have been obtained, following
the standard procedures for a homogeneous and isotropic
fluid, from the trace of the time-averaged stress tensor,
P = tr ⟨Π(t)⟩/3V , with the instantaneous stress tensor given
by68

Π(t) =
N
i=1


mvi(t) ⊗ vi(t) +

N
j>i

ri j(t) ⊗ Fi j(t)

, (15)

where vi(t) is the velocity of particle i, ri j(t) = ri(t) − r j(t),
Fi j(t) is the force acting on particle j due to particle i, and ⊗
denotes a tensor product. We also specify the internal energy
per particle,

U =
1
N

N
i=1

m
2

vi(t)2 +
N
j>i

uαiα j

�|ri j(t)|�

, (16)

at the critical points, which characterizes the microcanonical
ensemble probed by MD simulations; αi ∈ {A,B} denotes the
species of particle i.

IV. SPATIAL CORRELATIONS

A. Static structure factors

The structural properties of binary liquid mixtures arise
from the two fluctuating fields, given by the microscopic
partial number densities ϱα(r) of each species α. Their
fluctuating parts are68

δϱα(r) = −Nα

V
+

Nα
j=1

δ
(
r − r(α)j

)
, (17)

where the set
�
r(α)j

	
denotes the positions of the Nα particles

of species α. It is favorable to (approximately62) decouple the
spatial fluctuations into the overall density contribution δϱ(r)
and into the composition contribution δc(r) and, accordingly,
to consider the linear combinations69

δϱ(r) = δϱA(r) + δϱB(r) (18a)

and

δc(r) = xBδϱA(r) − xAδϱB(r), (18b)

δϱ(r) fluctuates around the total density ϱ = (NA + NB)/V . In
Fourier space, the corresponding spatial correlation functions
are defined as

Sϱϱ(|k|) = 1
N



δϱ∗k δϱk

�
, (19a)

Scc(|k|) = N


δc∗k δck

�
, (19b)

and

Sϱc(|k|) = Re


δϱ∗k δck

�
, (19c)

where, e.g., δϱk =

V eik·rδϱ(r) d3r and, see below, δϱ

(α)
k

=

V eik·rδϱα(r) d3r .
From on-the-fly calculations of the MD simulations,

we have determined the partial structure factors68 Sαβ(|k|)
= ( fαβ/N) δϱ(α)−k δϱ

(β)
k


, where fαβ = 1 for α = β and fαβ

= 1/2 for α , β, which allow us to determine

Sϱϱ(k) = SAA(k) + SBB(k) + 2SAB(k), (20a)

Scc(k) = x2
BSAA(k) + x2

ASBB(k) − 2xAxBSAB(k), (20b)

and

Sϱc(k) = xBSAA(k) − xASBB(k) + (xB − xA) SAB(k). (20c)

Here, we are primarily interested in the critical
fluctuations of the composition, which are borne out by Scc(k)
for small k. The latter is of the (extended) Ornstein–Zernike
form2,68

Scc(k) ≃ ϱkBT χ

[1 + k2ξ2]1−η/2 , kσ ≪ 1, (21)

which defines both the static order parameter susceptibility
χ ∼ τ−γ and the correlation length ξ ∼ τ−ν which in real space
governs the exponential decay of the correlation functions. The
anomalous dimension η ≈ 0.036 follows from the exponent
relation5 γ = ν(2 − η) and the values in Eq. (2). Exemplary
results for Scc(k) and Sϱϱ(k) are shown in Fig. 4, for model I
with ϱσ3 = 0.7, on double-logarithmic scales. For the studied
range of temperatures, T∗c 6 T∗ 6 2.3, all curves for Scc(k)
display a minimum near kσ ≈ 3 and are not sensitive to
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FIG. 4. Static structure factors Scc(k) (filled upper symbols) and Sϱϱ(k)
(open lower symbols) for model I (ϱσ3= 0.7, L = 50σ) at four dimension-
less temperatures T ∗ >T ∗c = 1.512 [see Eq. (19)]. The dashed lines show fits
to the extended Ornstein–Zernike form [Eq. (21)] for T > Tc. The solid line
indicates the critical law Scc(k,T =Tc)∼ k−2+η,η = 0.036, which appears
as a straight line on the double-logarithmic scales. Error bars are of the size
of the symbols.

temperature for k larger than this. Scc(k) increases as k → 0,
which, due to the divergence of χ ∼ τ−γ at Tc, becomes
stronger as T → Tc. This reflects the enhancement of the
critical composition fluctuations with a concomitant increase
of the correlation length ξ. The data for Scc(k) for T > Tc

exhibit a nice consistency with the theoretical extended
Ornstein–Zernike form, depicted by the dashed lines in Fig. 4,
over approximately one decade in wavenumber k. Right at Tc,
the data for Scc(k) follow for one decade in k the expected
critical power law2

Scc(k → 0,T = Tc) ∼ k−2+η, (22)

emerging from Eq. (21) for kξ ≫ 1.
To the contrary, the density fluctuations, described by

Sϱϱ(k), do not change appreciably within the temperature
range considered (Fig. 4). There is no critical enhancement
for small wave numbers and the spatial range of the
density–density correlations is short near the demixing
transition with ϱσ3 = 0.7. The value of Sϱϱ(k → 0) = ϱkBT κT
yields the isothermal compressibility κT = κ∗Tσ

3/ε of the
fluid, which diverges at a liquid–vapor critical point. Along
the λ-line Tc(ϱ), it increases from κ∗c B κ∗T(T = Tc) ≈ 0.02
for the highly incompressible fluid at ϱσ3 = 1 to κ∗c ≈ 0.11
at ϱσ3 = 0.7 (Table I). In all cases one has Sϱϱ(k → 0)
≪ Scc(k → 0). From this we conclude that, for the densities
considered here, the liquid–vapor and the demixing critical
points are sufficiently well separated.

In order to probe the location of the line of the
liquid–vapor critical points, we have lowered the density
along the isotherm T∗ = 1.51 ≈ T∗c (ϱσ3 = 0.7). Indeed, for
ϱσ3 . 0.6 the corresponding structure factors Sϱϱ(k), shown
in Fig. 5, display the emergence of critical density fluctuations
via a monotonic increase of the compressibility by a factor
of 19. Further, the value of κ∗T(ϱσ3 = 0.3, T∗ = 1.51) is

FIG. 5. Static structure factor Sϱϱ(k) for model I (L = 20σ) for six number
densities ϱ and fixed dimensionless temperature T ∗= 1.51. Lines are drawn
by using suitable splines.

ca. 7.4 times larger than κ∗c ≃ 0.25 at Tc(ϱσ3 = 0.6), following
the λ-line (Fig. 3). This suggests that κ∗T does not diverge
along the λ-line, which implies that the λ-line and the line
of liquid–vapor critical points do not meet, thus rendering
the occurrence of a tri-critical point in model I as to be
unlikely.

B. Correlation length and static order
parameter susceptibility

For a broad range of temperatures Tc 6 T . 2Tc, we have
run extensive MD simulations for three binary liquid mixtures
in model I and two binary liquid mixtures in model II. Fitting
Eq. (21) to the data for Scc(k) we have obtained the static order
parameter susceptibilities χ(T) and the correlation lengths
ξ(T). The data nicely follow the asymptotic power laws

χ(T → Tc) ≃ χ0τ
−γ, ξ(T → Tc) ≃ ξ0τ

−ν (23)

near the respective critical temperatures Tc with the 3d
Ising critical exponents γ and ν (see Figs. 6 and 7 for
the binary liquid mixtures in model I). Finite-size effects
become apparent for τ . 0.02, for which the data for both
quantities fall short of the asymptotic law. Interestingly, this
occurs already for correlation lengths ξ ≈ 4σ ≈ L/10. The
fit has also identified a temperature range, where corrections
to the asymptotic power laws are not yet important. The
necessity for such corrections is reflected by the data for χ(τ)
at ϱσ3 = 0.7, which bend upwards for τ & 0.2 (Fig. 6). The
amplitudes χ0 and ξ0 are non-universal quantities and are
listed in Table I for each fluid. The trend of a decreasing χ0
upon increasing ϱ (model I) may be explained by the fact that
the re-arrangement of particle positions becomes more costly
(in terms of potential energy) at denser packing, reducing the
response of the system. Even smaller values of χ0 have been
found for model II, with no pronounced dependence on the
strength εAB of the repulsion. Across all five binary mixtures

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  87.77.118.212 On: Fri, 09 Dec

2016 13:10:29



134505-9 Roy, Dietrich, and Höfling J. Chem. Phys. 145, 134505 (2016)

FIG. 6. Reduced static order parameter susceptibility χ∗= χεσ−3 [Eqs. (21)
and (23)] as function of τ = (T −Tc)/Tc within model I for three number
densities. The system sizes are L/σ = 42,47, and 50 for ϱσ3= 1.0,0.8,
and 0.7, respectively. Straight lines indicate the asymptotic power law
χ(T → Tc)≃ χ0τ

−γ with γ = 1.239. Error bars are smaller than the symbol
sizes.

the amplitude ξ0 of the correlation length varies only mildly
between 0.42σ and 0.53σ.

For comparison, we have also determined the order
parameter susceptibility χ via the SGMC simulations above
Tc from the variance of the fluctuating composition.2,68 For
the symmetric binary liquid mixtures as considered here, one
has ϱkBT χ = N

�

x2

A

�
− ⟨xA⟩2� with ⟨xA⟩ = 1/2 at T = Tc due

to the model symmetry and above Tc for the mixed phase. We
have found that the results obtained from these two approaches
agree.

FIG. 7. Correlation length ξ of the concentration fluctuations [Eqs. (21) and
(23)] as a function of τ on double-logarithmic scales. Straight lines refer to
the asymptotic power law ξ(T → Tc)≃ ξ0τ

−ν with ν = 0.630. All simulation
parameters are the same as in Fig. 6. Relative error bars are within 1%−9%.

V. TRANSPORT COEFFICIENTS

A. Interdiffusion constant

A critical point leaves its marks both in space and time:
upon approaching criticality the correlation length diverges
and the relaxation of a fluctuation or of a perturbation slows
down. The latter manifests itself in terms of universal power-
law behaviors of transport coefficients upon approaching Tc.
For example, a gradient in the composition field δc(r, t)
[Eq. (18b)] generates a collective current42,70,71

JAB(t) = xB

NA
i=1

v(A)i (t) − xA

NB
i=1

v(B)i (t), (24)

the magnitude of which is captured by the interdiffusion con-
stant Dm. This coefficient controls the collective diffusion of
the composition field and obeys a Green–Kubo relation,42,70,71

Dm =
1

dN Scc(k = 0)
 ∞

0
⟨JAB(t) · JAB(0)⟩ dt, (25)

where d is the spatial dimension and Scc(k = 0) = ϱkBT χ.
The interdiffusion constant is a combination of a static
property, i.e., the concentration susceptibility χ, and a pure
dynamic quantity, the concentration conductivity or Onsager
coefficient42,70,71

L = χDm. (26)

L connects gradients in the chemical potentials with the
current JAB; as its dimensionless form we use L∗ B Lεt0σ

−5.
The numerical evaluation of the time integral in Eq. (25)

is difficult due to statistical noise and hydrodynamic long-
time tails of the current correlators.68 An alternative route to
compute L is based on the generalized Einstein relation45,71,72

L = lim
t→∞

N2
α

2ϱN kBT
d
dt

δR2
α(t) (27)

for α ∈ {A,B} with the collective mean-square displacement

δR2
α(t) =

�����
 t

0
Vα(t) dt

�����

2
, Vα(t) = 1

Nα

Nα
i=1

v(α)i (t),
(28)

defined in terms of the centres-of-mass velocity Vα(t) by
considering particles of species α only. Note that VA(t)
= −VB(t) for a symmetric mixture (mA = mB, NA = NB) due
to conservation of the total momentum,


α mαNαVα = 0.

Our simulation data tell that the results for L as obtained
from both methods [Eqs. (25) and (27)] coincide within
the error bars. The latter route, however, exhibits superior
averaging properties, in line with previous findings for a
different system concerning the motion of a tagged particle.73

The success of the method hinges on evaluating δR2
α(t) by

using a certain “blocking scheme,”46,50 which resembles a
non-averaging multiple-τ correlator and naturally generates
a semi-logarithmic time grid, particularly suitable for the
description of slow processes. With this, the time derivative
in Eq. (27) can simply be computed from central difference
quotients. The results for L presented here have been obtained
by applying this method.
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The interdiffusion constant [Eq. (25)] can be decomposed
as Dm = ∆Dm + Db into a singular contribution ∆Dm
stemming from critical fluctuations in the fluid at large
length scales and an omnipresent analytic background term Db

arising due to short-length-scale fluctuations.74 As predicted
by MCT and dynamic RGT, asymptotically close to the
critical temperature ∆Dm follows the Einstein–Kawasaki
relation22,75

∆Dm(T → Tc) ≃ RDkBT
6πη̄ξ

≃ Dm,0 τ
νxD, (29)

where RD is a universal dimensionless number which will
be discussed in Sec. IV [see Eq. (39) below]; the asymptotic
equality on the right defines the critical amplitude Dm,0
with its dimensionless form D∗m,0 B Dm,0 t0σ

−2. Note that the
critical divergences of η̄ [Eqs. (5) and (6)] and ξ imply the
power-law singularity of ∆Dm [Eq. (29)] and the scaling
relation xD = 1 + xη [see Eqs. (1), (6), and (7)]. It was
demonstrated before38,39,42 that the background contribution
must be taken into account for a proper description of
the simulation data. Anticipating that also the background
term is proportional to temperature,43 Db(T) = Lb(T)/χ(T)
≃ Lb,0kBT/χ(T), suggests that the ratio L(T)/kBT is
described by the asymptotic law

L(T)
kBT

≃ L0τ
−νxλ +Lb,0, T → Tc, (30)

with the exponent combination

νxλ = ν(1 − η − xη) ≈ 0.567, (31)

where we have used Eqs. (1) and (26). The connection
to the amplitude of the interdiffusion constant is provided
by

Dm,0 = L0 kBTc/χ0. (32)

We have computed L for five binary liquid mixtures for a
wide range of temperatures, 1.01Tc 6 T . 2Tc (see Fig. 8; the

FIG. 8. Plot of L∗/T ∗ with L∗=Lεt0σ
−5 [Eqs. (25)–(28)] for model I as

a function of the reduced temperature τ, for three number densities ϱ. For
each ϱ, data for two different system sizes L are presented. Relative error
bars are within 3%–9%.

data for model II are not shown). For the three binary liquid
mixtures belonging to model I and within the investigated
range of temperatures, L/(kBT) increases by factors between
4.3 and 7.5 upon approaching Tc. This indicates the onset
of the expected divergence [Eq. (30)]. The remaining task
is to determine the values of the critical amplitude L0 and
the background contribution Lb,0 for each mixture such that
Eq. (30) describes the data. Here, automated fitting relying
on non-linear regression algorithms is not suitable due to
the asymptotic nature of power laws. Instead, the value for
Lb,0 has been adjusted first, such that plotting ∆L(T)/(kBT)
B L(T)/(kBT) −Lb,0 as a function of τ on double-logarithmic
scales renders the data to follow straight lines of slope
−νxλ for intermediate temperatures 0.1 . τ . 0.5 (Fig. 9).
Indeed, subsequently for all investigated mixtures, the critical
singularity ∆L(T)/kBT ∼ τ−νxλ [Eq. (30)] can be identified
in the data, which allows us to infer the critical amplitudes L0
(Table I).

However, for small τ . 0.1, the data for ∆L∗/T∗

systematically deviate from the asymptotic power law. This is
expected due to the emergence of finite-size corrections close
to Tc,38,39,42 which are significant despite the large simulation
boxes used (L/ξ & 7). We find that L0 increases by a factor
of ≈6 upon decreasing the number density ϱ of the fluid.
On the other hand, the background contribution Lb,0 turns
out to be almost insensitive to changes in the density so that
the background term in Eq. (30) becomes less relevant for
smaller ϱ.

B. Shear viscosity

Another transport quantity of central interest is the shear
viscosity η̄ (not to be confused with the critical exponent
η of the structure factor). Due to critical slowing down,
η̄(T) is expected to diverge at Tc. We have computed this
quantity using both the Green–Kubo and the Einstein–Helfand

FIG. 9. The same data as in Fig. 8 in terms of ∆L∗/T ∗=L∗/T ∗−L∗b,0 after
adjusting the background contribution L∗b,0. Solid lines refer to the power law
∆L/(kBT )≃L0τ

−νxλ with νxλ = 0.567 [Eq. (31)].
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formulae, involving the stress tensor as the generalized current.
The Green–Kubo formula reads68,76

η̄ =
ϱ

3kBT

 ∞

0

�
Cxy(t) + Cyz(t) + Cxz(t)� dt, (33)

and is based on the autocorrelators Ci j(t) of the off-diagonal
elements of the stress tensor Πi j [Eq. (15)],

Ci j(t) = 1
N



Πi j(t)Πi j(0)� . (34)

The autocorrelators Ci j(t) are normalized by N in order to
render a finite value of Ci j(t) in the thermodynamic limit.

Starting with the Helfand moments76,77

δG2
i j(t) =

1
N

( t

0
Πi j(t ′) dt ′

)2
, (35)

we have computed η̄ alternatively by means of the
Einstein–Helfand formula76,77

η̄ = lim
t→∞

ϱ

6kBT
d
dt


δG2

xy(t) + δG2
yz(t) + δG2

xz(t)

. (36)

The expressions in Eqs. (34) and (36) explicitly include
averages over the different Cartesian directions due to isotropy
of the mixed phase. We have checked that both routes yield
the same values of η̄, with the Einstein–Helfand formula
generating smaller error bars.

The thermal singularity of η̄ in model H ′ is the same as
in model H and reads6,23

η̄ ≃ η0τ
−νxη, νxη ≈ 0.043, (37)

which can be expressed as η̄ ≃ η0ξ
−xη
0 ξ xη with ξ ≃ ξ0τ

−ν

[compare Eq. (5)]. Figure 10 shows the shear viscosity η̄(τ)

FIG. 10. Dimensionless shear viscosity η̄∗= η̄σ3/εt0 as a function of τ, for
model I and three number densities. The chosen system sizes are L = 47σ,
42σ, and 50σ for ϱσ3= 1.0, 0.8, and 0.7, respectively. The straight lines
indicate the asymptotic critical exponent νxη ≈ 0.043; solid lines are fits
to the data. For ϱσ3= 0.7, the large error bars have precluded a fit of the
amplitude η0; instead, η0 has been estimated from Eq. (39) using RD = 1.0
(dashed line). Relative errors in η̄ vary between 2% and 8%. The resulting
values of η0 are reported in Table I.

for three number densities ϱ on double-logarithmic scales.
The observed increase of η̄ by a factor of ≈3.3 as ϱσ3

is varied from 0.7 to 1.0 supports the intuitive picture that
transport is slower in denser fluids. In order to facilitate the
direct determination of η0, instead of performing a finite-
size scaling analysis,47 we have considered particularly large
system sizes (see the caption of Fig. 10). By fixing the critical
exponent to νxη = 0.043, we have obtained the amplitude η0
by fits of Eq. (37) to the data in the temperature range that
is unaffected by finite-size effects; the results are listed in
Table I. The data for η̄ at ϱσ3 = 1.0 and 0.8 are compatible
with the critical power law (see solid lines in Fig. 10); the
divergence, however, is hardly inferred from the figure due
to the tiny value of the exponent νxη, albeit the present error
bars for η̄ are much smaller compared to those reported in
the literature. For ϱσ3 = 1.0, due to corrections the data for η̄
fall short of the asymptotic line for τ > 0.2. For ϱσ3 = 0.7,
we refrain from providing a value for η0 because for this low
density the determination of η0 requires enormous statistical
averaging, which we have not yet achieved. Yet, from the value
RD = 1.0 of the universal amplitude ratio [Eq. (39) below]
one finds η0 ≈ 1.1. The dashed line in Fig. 10 corresponds to
this predicted value.

Actually, as in the case of the Onsager coefficient L,
Eq. (37) has also to be augmented by an analytic background
contribution ηb. For the shear viscosity, this background term
has been argued to be of multiplicative character,78 i.e., the
universal amplitude η0 is proportional to the background
viscosity and takes the form η0 = ηb(q0ξ0)xη with a certain
(necessarily system-specific) wavenumber q0.33,43 Thus, in
contrast to the case of the Onsager coefficient, the analysis of
the critical divergence of the shear viscosity is not hampered
by the presence of an analytic background.

VI. UNIVERSAL AMPLITUDE RATIOS

Generically, critical amplitudes are non-universal and
depend on microscopic details of the systems. However,
certain ratios of critical amplitudes are known to be universal.
One such ratio for static quantities is4,5,79

R+ξ R−1/d
c = ξ+0

*
,

ϕ2
0

kBTc χ+0

+
-

1/d

, (38)

as predicted by the hypothesis of two-scale factor universality.
Here, the superscript “+” emphasizes that (apart from ϕ0)
the amplitudes correspond to T > Tc. For binary liquid
mixtures belonging to the 3d Ising universality class, the
value of R+ξ R−1/d

c , as estimated theoretically and experi-
mentally, lies within the ranges [0.68,0.70] and [0.67,0.72],
respectively.5

The so-called Kawasaki amplitude RD = 6πη̄ξ/
(kBT∆Dm) [Eq. (29)] is a universal amplitude ratio involving
transport coefficients, i.e., the critical enhancement ∆Dm of
the mutual diffusivity [Eq. (29)]. Inserting the asymptotic
singular behaviors of ξ, χ, and η̄ [Eqs. (23) and (37)] as
well as ∆Dm ≃ L0τ

−νxλ/χ0 [see Eqs. (26) and (30)], the
temperature dependence drops out and one finds
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RD =
6πη0ξ0L0

χ0
. (39)

This combination of non-universal static and dynamic critical
amplitudes has been shown to be a universal number.74

Theoretical calculations based on dynamic RGT predict24

RD ≈ 1.07, while MCT provides33 RD ≈ 1.03; experimental
data yield33,74 RD = 1.01 ± 0.04.

A calculation of the amplitude ratio R+ξ R−1/d
c in Eq. (38)

combines the uncertainties in the separately determined
amplitudes ϕ0, ξ0, and χ0. Table I lists these values.
Equivalently, the universal ratio is given directly as the limit
τ ↘ 0 of the combination Z(τ) B ξ(τ)[φ(τ)2/(kBTc χ(τ))]1/3.
However, the omnipresent finite-size corrections prohibit us
from taking the limit rigorously. Yet, one can expect to find
a temperature range close to Tc in which all quantities φ,
ξ, and χ follow their asymptotic critical laws. This implies
that in this temperature range Z(τ) displays a plateau at
the value of R+ξ R−1/d

c . Figure 11 provides a test of this
approach for the three mixtures within model I. Indeed, a
plateau may be inferred for each data set after averaging
out the scatter of the data points. The estimates of R+ξ R−1/d

c

obtained this way (0.738 ± 0.016, 0.70 ± 0.03, 0.722 ± 0.023
for ϱσ3 = 1.0, 0.8, 0.7, respectively, within model I) match
well with those obtained from Eq. (38) by inserting the critical
amplitudes, but exhibit slightly smaller errors. The results for
the 5 binary mixtures studied here as well as the results of
Ref. 42 corroborate that R+ξ R−1/d

c is a universal number with
a value of 0.70 ± 0.01 (Fig. 12). Our estimate for R+ξ R−1/d

c

is in good agreement with previous values for this universal
ratio obtained from theory and experiments [see text below
Eq. (38)].

Concerning the dynamic amplitude ratio RD, we report
results for model I only for ϱσ3 = 1.0 and 0.8 because it
is difficult to resolve the critical behavior of the viscosity
at low densities. A similar analysis as above in terms of

FIG. 11. Temperature dependence of the dimensionless and supposedly uni-
versal quantity ξ(φ2/(kBTcχ))1/3 within model I for three number densities.
Symbols correspond to simulation data and solid lines represent averages of
the data points.

FIG. 12. The universal static amplitude ratio RξR
−1/d
c , the dynamic univer-

sal amplitude ratio RD, and the dimensionless quantity Pcκc at criticality for
various binary liquid mixtures within models I and II. The grey and orange
regions represent the ranges of the theoretical and experimental predictions,
respectively. The dashed lines correspond to the averages for Pcκc within
models I and II, respectively. The relative error bars of RD are about 20%.

Y (τ) = 6πηξ∆L/kBT χ has turned out to be inconclusive,
in that no plateau in Y (τ) has emerged. We attribute this
to the fact that the critical range of temperatures (free from
both asymptotic and finite-size corrections) for the Onsager
coefficient is located at higher temperatures than for the
other quantities entering Eq. (39) (see also Figs. 6, 7, 9, and
10). Therefore, Table I lists the values for RD as obtained
from Eq. (39). Despite significant error bars of about 20%,
the estimates coincide surprisingly well with the expectation
RD ≈ 1.0 (Fig. 12).

Finally, we note that the dimensionless product Pcκc
of pressure and compressibility at the demixing transition
appears to stay almost constant at 0.26 ± 0.02 within model I
(insensitive to the density ϱ) and at ca. 0.33 for model II
(insensitive to the strength ϵAB of repulsion). This is
remarkable because Pc and κc separately vary across these
ranges by almost an order of magnitude. However, here
we point out that the product Pcκc is not related to the
order parameter field, which is the concentration, but to the
number density field, which in model H ′ serves as a secondary
conserved field.6 Thus, there is no theoretical basis to consider
Pcκc as a universal number; indeed the values of Pcκc are
different for models I and II.

VII. SUMMARY AND CONCLUSIONS

We have computationally investigated the static and
dynamic properties of five symmetric binary liquid mixtures
close to their continuous demixing transitions. To this end, we
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have employed a combination of Monte Carlo simulations in
the semi-grand canonical ensemble and molecular dynamics
(MD) simulations. While the former is suited best to determine
the phase diagram, only the latter obeys the conservation
laws of actual liquid mixtures and thus properly captures
the critical dynamics associated with model H ′. Previous
computational studies of the critical behavior of such mixtures
have been based on small system sizes in conjunction with
suitable finite-size scaling analyses. A massively parallel
implementation of the MD simulations using GPUs made
it possible to explore much larger system sizes than before,
which has allowed us to determine the critical amplitudes
directly.

The chosen mixtures represent a wide range of
critical temperatures Tc, number densities ϱ, and isothermal
compressibilities κT . For the family of mixtures considered,
the particles interact via truncated Lennard-Jones potentials.
The interaction potential uAB(r) for pairs of unlike particles
has been chosen to either include the usual attractive part or
to be purely repulsive, which we refer to as models I and II,
respectively. For the fluids in model I, the density ϱ has been
varied, while within model II the strength εAB of the repulsion
between unlike species has been varied. All results of the data
analysis have been compiled in Table I. The main findings of
our work are the following:

(i) For each fluid, we have calculated the phase diagram
in the temperature–composition plane, from which the
corresponding critical temperatures Tc have been extracted
by using the critical scaling of the order parameter (Fig. 1)
and Binder’s cumulant intersection method (Fig. 2). We have
found that the values of Tc within model II are a factor of ca. 2
higher than for otherwise comparable fluids in model I. Within
model II, reinforcing the repulsion εAB leads to a drastic
increase of Tc. Further, at the demixing transition, we have
computed the pressure Pc and the isothermal compressibility
κc, which exhibit a large variability across all mixtures,
covering almost one order of magnitude.

(ii) The loci of the liquid–liquid critical points Tc(ϱ), also
referred to as λ-line, have been calculated within model I.
This curve Tc(ϱ) is non-monotonic, indicating a re-entrance
phenomenon upon varying the density along an isotherm
(Fig. 3). In this context, for model I we have also investigated
the potential occurrence of a critical end point or a tri-critical
point at which the λ-line meets the liquid–vapor critical point.
Our results for the isothermal compressibility (Fig. 5) indicate
that this is not the case. This issue calls for additional future
investigations.

(iii) The structural properties of the mixtures have been
analyzed in terms of the static structure factors Scc(k) and
Sϱϱ(k) of the composition and density fields, respectively
(Fig. 4). As expected, long-wavelength fluctuations of the
composition become dominant near the demixing transition:
for small wave numbers, Scc(k → 0) increases sharply as Tc is
approached, at which the critical power law Scc(k) ∼ k−2+η is
observed over one decade in k which is facilitated by the large
system sizes chosen. To the contrary, Sϱϱ(k), which is probing
density fluctuations, is almost insensitive to temperature
changes in the range Tc 6 T < 1.6Tc; in particular, it does
not display any critical enhancement at small k.

(iv) From Scc(k) we have determined the correlation
length ξ and the order parameter susceptibility χ. For both
quantities, the scaling with the corresponding critical Ising
exponents is confirmed (Figs. 6 and 7), allowing us to extract
the non-universal critical amplitudes ξ0 and χ0. We have found
that χ0 decreases upon increasing density (model I), which we
attribute to an energetically penalized particle rearrangement
at denser packing. The values of χ0 are less sensitive to
changes in the strength of the AB repulsion (model II). The
correlation length ξ is limited by the finite system size.
Nonetheless, we have been able to achieve values of up
to ξ ≈ 10σ in our simulations. Across all five binary fluid
mixtures, its amplitude varies only mildly around ξ0 ≈ 0.5σ.

(v) The critical transport behavior has been studied in
terms of the Onsager coefficient L = χDm and the shear
viscosity η̄, the former also determining the interdiffusion
constant Dm. Within model I, the Onsager coefficient and
thus its critical amplitude L0 increase by a factor of 6 upon
varying the density from ϱσ3 = 1 to 0.7 (Figs. 8 and 9);
concomitantly, the shear viscosity η̄ decreases by a factor
of 3 (Fig. 10). This trend is in line with our notion that
mass diffusion is faster in a less dense fluid; it also has
direct consequences for the computational efficiency of a
model. The asymptotic critical enhancement of L is obscured,
first, by the non-universal analytic background contribution
away from Tc and, second, by finite-size corrections close
to Tc, which are still significant despite the large simulation
boxes we used. These issues have prevented us to obtain
accurate estimates of L0. Furthermore, the critical behavior of
η̄ ∼ |T − Tc |−νxη, νxη ≈ 0.043 is difficult to assess reliably due
to the smallness of the critical exponent. We have obtained the
critical amplitude for 3 out of the 5 mixtures (within model I
for ϱσ3 = 1,0.8 and within model II for ϵ AB = 0.25ε).

(vi) Finally, we have computed two universal amplitude
ratios, involving several static and dynamic non-universal
critical amplitudes (all above Tc). One such ratio of static
quantities is R+ξ R−1/3

c [Eq. (38)], the other ratio RD is a
combination of both static and dynamic amplitudes [Eq. (39)].
For both ratios, quantitative predictions are available for
the universality classes of the models H and H ′ based on
mode-coupling and dynamic renormalization group theories,
which are supported by experimental data. Across all 5
mixtures studied and including the results of Ref. 42,
the simulation results for the static ratio R+ξ R−1/3

c yield a
universal value 0.70 ± 0.01, in agreement with theoretical
predictions (Fig. 12). Our results for the dynamic ratio RD

are compatible with theoretical and experimental estimates,
but they are subject to large uncertainties given the difficulties
in determining the dynamic critical amplitudes L0 and η0.
A notable finding is that the dimensionless product Pcκc of
pressure and compressibility is remarkably constant along
the λ-line in model I and with respect to variations of the
strength εAB of repulsion in model II (Fig. 12).

The present study reports the first comprehensive analysis
of the density dependence of the critical amplitudes. The
knowledge of these amplitudes for a given simulation model
facilitates the calibration of the model to a given physical
binary liquid mixture. As an example we refer to the
well-characterized water–lutidine mixture80 and model I for
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ϱσ3 = 0.7: first, the measured correlation length amplitude
ξ0 ≈ 0.2 nm implies the length scale σ ≈ 0.4 nm for all
of the presented simulations. Second, the relaxation rate
amplitude Γ0 ≈ 25 × 109 s−1 yields the critical amplitude of
the interdiffusion constant Dm,0 = Γ0ξ

2
0/2 ≈ 5 × 10−10 m2 s−1,

which has to be compared with the simulation result
Dm,0 ≈ 0.09σ2/t0, fixing the time scale t0 ≈ 30 ps. The energy
scale ε is set by the critical temperature, Tc ≈ 307 K in
the experiments and kBTc ≈ 1.51ε in the simulations, and
thus ε/kB ≈ 203 K or ε ≈ 2.8 × 10−21 J. Accordingly, the
universal amplitude ratios fix the critical amplitudes for a
number of related physical quantities such as the composition
susceptibility χ0, the viscosity η0, or the surface tension.81

The coarse-grained simulation models (replacing an organic
molecule and water by symmetric Lennard-Jones spheres),
however, come at the price that physical quantities not
linked to the critical singularities may not be captured
correctly. For instance, along these lines, the pressure at
criticality is predicted to be Pc ≈ 110 MPa, which is 3 orders
of magnitude larger than the ambient pressure, while the
compressibility κc ≈ 25 × 10−10 Pa−1 is too high by a factor
of≈ 5. Increasing the density ϱwill reduce the compressibility,
but simultaneously increase the pressure and also slow down
the overall dynamics (which is computationally expensive).
Quantitative agreement with actual binary liquid mixtures
can be achieved with force-field-based simulation models, see
Ref. 82 for a recent study. Nevertheless, the comparably simple
models discussed here can correctly describe the physical
behavior at long wave lengths thanks to the universality of
the demixing transition. The presented compilation of results
may serve as a guide to find the simulation model that is best
suited to address a specific phenomenon.

This study is supposed to stimulate further computational
investigations concerning critical transport in fluids. Specifi-
cally, so far there are no dedicated computations of dynamic
critical amplitudes below Tc and also none for liquid–vapor
transitions, neither above nor below Tc. A quantitatively
reliable determination of the ratio η0/ηb is also of significant
importance, in particular in view of the difficulties associated
with obtaining an accurate value of this ratio from experiments.
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