28 research outputs found
Lineshape measurement of an extreme-weak amplitude-fluctuating light source by the photon-counting-based second-order correlation spectroscopy
We demonstrate lineshape measurement of an extreme-weak amplitude fluctuating
light source by using the photon-counting-based second-order correlation
spectroscopy combined with the heterodyne technique. The amplitude fluctuation
of a finite bandwidth introduces a low-lying spectral structure in the
lineshape and thus its effect can be isolated from that of the phase
fluctuation. Our technique provides extreme sensitivity suited for
single-atom-level applications.Comment: 3 pages, 3 figure
Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion
Resonance fluorescence of a single trapped ion is spectrally analyzed using a
heterodyne technique. Motional sidebands due to the oscillation of the ion in
the harmonic trap potential are observed in the fluorescence spectrum. From the
width of the sidebands the cooling rate is obtained and found to be in
agreement with the theoretical prediction.Comment: 4 pages, 4 figures. Final version after minor changes, 1 figure
replaced; to be published in PRL, July 10, 200
Active laser frequency stabilization using neutral praseodymium (Pr)
We present a new possibility for the active frequency stabilization of a
laser using transitions in neutral praseodymium. Because of its five outer
electrons, this element shows a high density of energy levels leading to an
extremely line-rich excitation spectrum with more than 25000 known spectral
lines ranging from the UV to the infrared. We demonstrate the active frequency
stabilization of a diode laser on several praseodymium lines between 1105 and
1123 nm. The excitation signals were recorded in a hollow cathode lamp and
observed via laser-induced fluorescence. These signals are strong enough to
lock the diode laser onto most of the lines by using standard laser locking
techniques. In this way, the frequency drifts of the unlocked laser of more
than 30 MHz/h were eliminated and the laser frequency stabilized to within
1.4(1) MHz for averaging times >0.2 s. Frequency quadrupling the stabilized
diode laser can produce frequency-stable UV-light in the range from 276 to 281
nm. In particular, using a strong hyperfine component of the praseodymium
excitation line E = 16 502.616_7/2 cm^-1 -> E' = 25 442.742_9/2 cm^-1 at lambda
= 1118.5397(4) nm makes it possible - after frequency quadruplication - to
produce laser radiation at lambda/4 = 279.6349(1) nm, which can be used to
excite the D2 line in Mg^+.Comment: 10 pages, 14 figure
Nonclassical Interference Effects In The Radiation From Coherently Driven Uncorrelated Atoms
We demonstrate the existence of new nonclassical correlations in the
radiation of two atoms, which are coherently driven by a continuous laser
source. The photon-photon-correlations of the fluorescence light show a spatial
interferene pattern not present in a classical treatment. A feature of the new
phenomenon is, that bunched and antibunched light is emitted in different
spatial directions. The calculations are performed analytically. It is pointed
out, that the correlations are induced by state reduction due to the
measurement process when the detection of the photons does not distinguish
between the atoms. It is interesting to note, that the phenomena show up even
without any interatomic interaction.Comment: 4 pages, 6 Figure
Resonance fluorescence of a trapped three-level atom
We investigate theoretically the spectrum of resonance fluorescence of a
harmonically trapped atom, whose internal transitions are --shaped and
driven at two-photon resonance by a pair of lasers, which cool the
center--of--mass motion. For this configuration, photons are scattered only due
to the mechanical effects of the quantum interaction between light and atom. We
study the spectrum of emission in the final stage of laser--cooling, when the
atomic center-of-mass dynamics is quantum mechanical and the size of the wave
packet is much smaller than the laser wavelength (Lamb--Dicke limit). We use
the spectral decomposition of the Liouville operator of the master equation for
the atomic density matrix and apply second order perturbation theory. We find
that the spectrum of resonance fluorescence is composed by two narrow sidebands
-- the Stokes and anti-Stokes components of the scattered light -- while all
other signals are in general orders of magnitude smaller. For very low
temperatures, however, the Mollow--type inelastic component of the spectrum
becomes visible. This exhibits novel features which allow further insight into
the quantum dynamics of the system. We provide a physical model that interprets
our results and discuss how one can recover temperature and cooling rate of the
atom from the spectrum. The behaviour of the considered system is compared with
the resonance fluorescence of a trapped atom whose internal transition consists
of two-levels.Comment: 11 pages, 4 Figure
Observation of squeezed light from one atom excited with two photons
Single quantum emitters like atoms are well-known as non-classical light
sources which can produce photons one by one at given times, with reduced
intensity noise. However, the light field emitted by a single atom can exhibit
much richer dynamics. A prominent example is the predicted ability for a single
atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or
phase fluctuations. It has long been foreseen, though, that such squeezing
would be "at least an order of magnitude more difficult" to observe than the
emission of single photons. Squeezed beams have been generated using
macroscopic and mesoscopic media down to a few tens of atoms, but despite
experimental efforts, single-atom squeezing has so far escaped observation.
Here we generate squeezed light with a single atom in a high-finesse optical
resonator. The strong coupling of the atom to the cavity field induces a
genuine quantum mechanical nonlinearity, several orders of magnitude larger
than for usual macroscopic media. This produces observable quadrature squeezing
with an excitation beam containing on average only two photons per system
lifetime. In sharp contrast to the emission of single photons, the squeezed
light stems from the quantum coherence of photon pairs emitted from the system.
The ability of a single atom to induce strong coherent interactions between
propagating photons opens up new perspectives for photonic quantum logic with
single emittersComment: Main paper (4 pages, 3 figures) + Supplementary information (5 pages,
2 figures). Revised versio
Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence
Single dye molecules at cryogenic temperatures display many spectroscopic
phenomena known from free atoms and are thus promising candidates for
fundamental quantum optical studies. However, the existing techniques for the
detection of single molecules have either sacrificed the information on the
coherence of the excited state or have been inefficient. Here we show that
these problems can be addressed by focusing the excitation light near to the
absorption cross section of a molecule. Our detection scheme allows us to
explore resonance fluorescence over 9 orders of magnitude of excitation
intensity and to separate its coherent and incoherent parts. In the strong
excitation regime, we demonstrate the first observation of the Mollow triplet
from a single solid-state emitter. Under weak excitation we report the
detection of a single molecule with an incident power as faint as 150 attoWatt,
paving the way for studying nonlinear effects with only a few photons.Comment: 6 figure
Complementarity and Young's interference fringes from two atoms
The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2
transition of two identical atoms confined in a three-dimensional harmonic
potential is calculated. Thermal motion of the atoms is included. Agreement is
obtained with experiments [Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)].
Contrary to some theoretical predictions, but in agreement with the present
calculations, a fringe visibility greater than 50% can be observed with
polarization-selective detection. The dependence of the fringe visibility on
polarization has a simple interpretation, based on whether or not it is
possible in principle to determine which atom emitted the photon.Comment: 12 pages, including 7 EPS figures, RevTex. Submitted to Phys. Rev.
Narrow Spectral Feature In Resonance Fluorescence With A Single Monochromatic Laser Field
We describe the resonance fluorescence spectrum of an atomic three-level
system where two of the states are coupled by a single monochromatic laser
field. The influence of the third energy level, which interacts with the two
laser-coupled states only via radiative decays, is studied in detail. For a
suitable choice of parameters, this system gives rise to a very narrow
structure at the laser frequency in the fluorescence spectrum which is not
present in the spectrum of a two-level atom. We find those parameter ranges by
a numerical analysis and use the results to derive analytical expressions for
the additional narrow peak. We also derive an exact expression for the peak
intensity under the assumption that a random telegraph model is applicable to
the system. This model and a simple spring model are then used to describe the
physical origins of the additional peak. Using these results, we explain the
connection between our system, a three-level system in V-configuration where
both transitions are laser driven, and a related experiment which was recently
reported.Comment: 14 pages, 15 figures, extension of the spring mode
Resonance Fluorescence Spectrum of a Trapped Ion Undergoing Quantum Jumps
We experimentally investigate the resonance fluorescence spectrum of single
171Yb and 172Yb ions which are laser cooled to the Lamb-Dicke regime in a
radiofrequency trap. While the fluorescence scattering of 172Yb is continuous,
the 171Yb fluorescence is interrupted by quantum jumps because a nonvanishing
rate of spontaneous transitions leads to electron shelving in the metastable
hyperfine sublevel 2D3/2(F=2). The average duration of the resulting dark
periods can be varied by changing the intensity of a repumping laser field.
Optical heterodyne detection is employed to analyze the fluorescence spectrum
near the Rayleigh elastic scattering peak. It is found that the stochastic
modulation of the fluorescence emission by quantum jumps gives rise to a
Lorentzian component in the fluorescence spectrum, and that the linewidth of
this component varies according to the average duration of the dark
fluorescence periods. The experimental observations are in quantitative
agreement with theoretical predictions.Comment: 14 pages including 4 figures, pdf file, fig.1 replace