92 research outputs found

    Los efectos de la encíclica "Aeterna Patris" en la filosofía y la teología de lengua alemana

    Get PDF

    Multimodal Communication in a Noisy Environment: A Case Study of the Bornean Rock Frog Staurois parvus

    Get PDF
    High background noise is an impediment to signal detection and perception. We report the use of multiple solutions to improve signal perception in the acoustic and visual modality by the Bornean rock frog, Staurois parvus. We discovered that vocal communication was not impaired by continuous abiotic background noise characterised by fast-flowing water. Males modified amplitude, pitch, repetition rate and duration of notes within their advertisement call. The difference in sound pressure between advertisement calls and background noise at the call dominant frequency of 5578 Hz was 8 dB, a difference sufficient for receiver detection. In addition, males used several visual signals to communicate with conspecifics with foot flagging and foot flashing being the most common and conspicuous visual displays, followed by arm waving, upright posture, crouching, and an open-mouth display. We used acoustic playback experiments to test the efficacy-based alerting signal hypothesis of multimodal communication. In support of the alerting hypothesis, we found that acoustic signals and foot flagging are functionally linked with advertisement calling preceding foot flagging. We conclude that S. parvus has solved the problem of continuous broadband low-frequency noise by both modifying its advertisement call in multiple ways and by using numerous visual signals. This is the first example of a frog using multiple acoustic and visual solutions to communicate in an environment characterised by continuous noise

    Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing

    Get PDF
    This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy

    Voronoi Tessellation Captures Very Early Clustering of Single Primary Cells as Induced by Interactions in Nascent Biofilms

    Get PDF
    Biofilms dominate microbial life in numerous aquatic ecosystems, and in engineered and medical systems, as well. The formation of biofilms is initiated by single primary cells colonizing surfaces from the bulk liquid. The next steps from primary cells towards the first cell clusters as the initial step of biofilm formation remain relatively poorly studied. Clonal growth and random migration of primary cells are traditionally considered as the dominant processes leading to organized microcolonies in laboratory grown monocultures. Using Voronoi tessellation, we show that the spatial distribution of primary cells colonizing initially sterile surfaces from natural streamwater community deviates from uniform randomness already during the very early colonisation. The deviation from uniform randomness increased with colonisation — despite the absence of cell reproduction — and was even more pronounced when the flow of water above biofilms was multidirectional and shear stress elevated. We propose a simple mechanistic model that captures interactions, such as cell-to-cell signalling or chemical surface conditioning, to simulate the observed distribution patterns. Model predictions match empirical observations reasonably well, highlighting the role of biotic interactions even already during very early biofilm formation despite few and distant cells. The transition from single primary cells to clustering accelerated by biotic interactions rather than by reproduction may be particularly advantageous in harsh environments — the rule rather than the exception outside the laboratory

    Inter-organizational governance and trilateral trust building: a case study of crowdsourcing-based open innovation in China

    Get PDF
    In a case study of a Chinese crowdsourcing intermediary, we explore the impact of inter-organizational governance on trilateral trust-building. We show that formal control and relational governance mechanisms are essential for swift and knowledge-based trust in R&D crowdsourcing. The case also indicates that Chinese businesses continue to use guanxi (informal personal connections) as a relational and contingent mechanism to maintain affect-based trust, but guanxi is shown to inhibit the growth of Internet-based crowdsourcing for open innovation in China

    On the distinctive call of a threatened phenotype of Allobates femoralis (Anura: Aromobatidae) and its recognition by allopatric conspecific males

    Get PDF
    ABSTRACT The brilliant-thighed frog [Allobates femoralis (Boulenger, 1884)]; is distributed across the Amazon basin and aggregates several allopatric evolutionary lineages, some of which present variation in their advertisement calls. In 2009, an unregistered call phenotype was discovered in the region of Altamira and Vitória do Xingu, State of Pará, Brazil, where males emit advertisement calls formed by six notes, differing from the typical four-note calls described for other A. femoralis populations. In this study, we describe in detail these untypical calls. Additionally, we test whether the aggressive responses of males of a 4-note reference population (Reserva Ducke - RFAD, in Manaus, State of Amazonas) is differential towards the 6-note calls of males recorded in Altamira (Pará State), and towards 4-note calls recorded in one location at the Tapajós-Xingu interfluve (Belterra, Pará State), and in RFAD. Playback experiments were conducted between 2011-2012, and used standardized stimuli produced from natural call recordings. A total of 30 independent experiments were conducted, 10 for each stimuli class. We measured the phonotaxis of focal males in relation to the loudspeaker, considering the time to orientation and the time to approach the loudspeaker. We found that not all A. femoralis males at RFAD promptly recognize calls from males recorded in Altamira. However, when considering only males who approached the loudspeaker, differences in aggressive reactions were not seen between stimuli classes. Our findings show that the ability to recognize calls from Altamira as belonging to co-specific males is not universal among males at RFAD. The new A. femoralis phenotype occurs in areas potentially impacted by the Belo Monte hydroelectric complex and complementary studies indicate that no gene flow exists between this group and A. femoralis from adjacent regions. Hence, developments in Altamira may put this incipient speciation process at risk
    corecore