28 research outputs found

    Diversité des interactions trophiques à l'interface microorganismes - microcrustacés dans une zone littorale à macrophytes : conséquences sur le transfert des acides gras essentiels

    Get PDF
    Areas with littoral macrophytes play an important functional role in freshwater systems. In addition to the high productivity recorded in such areas, they also shelter a high diversity of organisms. However, possible links between spatial heterogeneity, biodiversity and energy pathways are still poorly known. As they constitute the major link between microorganisms and species higher in the food web, microcrustaceans play a key role in the transfer of polyunsaturated fatty acids (PUFA) to organisms at higher trophic levels. In this study, we wanted to assess if microcrustaceans diversity encountered in macrophytes littoral zones would lead to a variability of PUFA transfer in the food web. This work combined controlled conditions experiment and studies run in natural environments in order to help the interpretation of results from lipid analysis, isotopic analysis and fatty acid isotope analysis. Our results indicate that there are no differences of PUFA concentrations between cladocerans from a macrophyte littoral zone when they were exposed to the same pool of dietary PUFA. Hence, in heterogeneous feeding habitats such as macrophytes zones where these cladocerans often co-exist, foraging behavior of cladoceran species more than differences of metabolism may be crucial for determining PUFA transfer to upper trophic levels. In addition to seston, our study shows indeed that some cladoceran species are able to forage on the epiphytic and neustonic compartments. Lipid analyses highlight moreover that the diversity of trophic compartments lead to a variability of PUFA inputs to primary consumers. In our study, the epiphytic compartment is indeed significantly more concentrated in PUFA than seston. At the air-water interface, neuston is moreover characterized by important allochthonous organic matter accumulation. During a pollen rain, this organic matter represents an important source of carbon and PUFA for some microcrustacean species. In macrophytes littoral zones, cladocerans complementarity leads to a more complete use of PUFA sources. The association of trophic compartment diversity and microcrustacean diversity probably allows an optimization of PUFA transfer to higher trophic levels.Les zones littorales Ă  macrophytes ont un rĂŽle fonctionnel important dans les hydrosystĂšmes fluviaux. Outre leur forte productivitĂ©, ces milieux se caractĂ©risent Ă©galement par une forte biodiversitĂ©. Cependant, les liens pouvant exister entre hĂ©tĂ©rogĂ©nĂ©itĂ© spatiale, biodiversitĂ© et flux de matiĂšre restent encore peu connus. En milieu aquatique, les microcrustacĂ©s reprĂ©sentent un maillon clef entre les microorganismes eucaryotes, qui sont les principaux producteurs d’acide gras polyinsaturĂ©s (AGPI), et le compartiment piscicole. Dans ce travail de thĂšse, nous avons donc cherchĂ© Ă  savoir comment la diversitĂ© des cladocĂšres rencontrĂ©e dans une zone littorale Ă  macrophytes pouvait affecter le transfert des AGPI dans les rĂ©seaux trophiques. L’approche vers laquelle s’est orientĂ© ce travail combine Ă  la fois des Ă©tudes menĂ©es en milieu contrĂŽlĂ©, permettant des expĂ©riences de nutrition, ainsi que des Ă©tudes menĂ©es en milieu naturel. Cette double approche permet de faciliter l’interprĂ©tation des rĂ©sultats issus des analyses lipidiques, isotopiques et isotopiques de composĂ©s spĂ©cifiques. Nos rĂ©sultats montrent ainsi qu’il n’existe pas de variabilitĂ© dans les capacitĂ©s d’accumulation et de bioconversion des AGPI chez les cladocĂšres coexistant dans une zone littorale Ă  macrophytes. D’aprĂšs ces rĂ©sultats, il semble donc que le principal facteur influençant la variabilitĂ© des transferts d’AGPI vers le compartiment piscicole soit la stratĂ©gie alimentaire et le compartiment trophique exploitĂ© par les diffĂ©rentes espĂšces de microcrustacĂ©s. En effet, outre le seston, notre Ă©tude montre que certaines espĂšces de cladocĂšres rencontrĂ©es en zone littorale sont capables d’exploiter l’épiphyton et le neuston. Les analyses lipidiques mettent de plus en Ă©vidence, que la diversitĂ© des compartiments trophiques exploitĂ©s s’accompagne d’une variabilitĂ© d’apports en AGPI. Dans notre Ă©tude, l’épiphyton est ainsi significativement plus concentrĂ© en AGPI que le seston. A l’interface air-eau, le neuston se caractĂ©rise de plus, par une forte accumulation de matiĂšre organique d’origine allochtone qui, dans le cas d’une pluie de pollen, reprĂ©sente une source de carbone et d’AGPI non nĂ©gligeable pour certaines espĂšces de microcrustacĂ©s. Dans les zones littorales Ă  macrophytes, la complĂ©mentaritĂ© des espĂšces de cladocĂšres entraine donc une utilisation plus complĂšte des ressources. La diversitĂ© des compartiments trophiques, associĂ©e Ă  la diversitĂ© des microcrustacĂ©s, permet donc probablement une optimisation du transfert des AGPI vers les niveaux trophiques supĂ©rieurs

    Diversity of trophic interactions between microorganisms and microcrustaceans in a macrophyte littoral zone : consequences for essential fatty acid transfer

    No full text
    Les zones littorales Ă  macrophytes ont un rĂŽle fonctionnel important dans les hydrosystĂšmes fluviaux. Outre leur forte productivitĂ©, ces milieux se caractĂ©risent Ă©galement par une forte biodiversitĂ©. Cependant, les liens pouvant exister entre hĂ©tĂ©rogĂ©nĂ©itĂ© spatiale, biodiversitĂ© et flux de matiĂšre restent encore peu connus. En milieu aquatique, les microcrustacĂ©s reprĂ©sentent un maillon clef entre les microorganismes eucaryotes, qui sont les principaux producteurs d’acide gras polyinsaturĂ©s (AGPI), et le compartiment piscicole. Dans ce travail de thĂšse, nous avons donc cherchĂ© Ă  savoir comment la diversitĂ© des cladocĂšres rencontrĂ©e dans une zone littorale Ă  macrophytes pouvait affecter le transfert des AGPI dans les rĂ©seaux trophiques. L’approche vers laquelle s’est orientĂ© ce travail combine Ă  la fois des Ă©tudes menĂ©es en milieu contrĂŽlĂ©, permettant des expĂ©riences de nutrition, ainsi que des Ă©tudes menĂ©es en milieu naturel. Cette double approche permet de faciliter l’interprĂ©tation des rĂ©sultats issus des analyses lipidiques, isotopiques et isotopiques de composĂ©s spĂ©cifiques. Nos rĂ©sultats montrent ainsi qu’il n’existe pas de variabilitĂ© dans les capacitĂ©s d’accumulation et de bioconversion des AGPI chez les cladocĂšres coexistant dans une zone littorale Ă  macrophytes. D’aprĂšs ces rĂ©sultats, il semble donc que le principal facteur influençant la variabilitĂ© des transferts d’AGPI vers le compartiment piscicole soit la stratĂ©gie alimentaire et le compartiment trophique exploitĂ© par les diffĂ©rentes espĂšces de microcrustacĂ©s. En effet, outre le seston, notre Ă©tude montre que certaines espĂšces de cladocĂšres rencontrĂ©es en zone littorale sont capables d’exploiter l’épiphyton et le neuston. Les analyses lipidiques mettent de plus en Ă©vidence, que la diversitĂ© des compartiments trophiques exploitĂ©s s’accompagne d’une variabilitĂ© d’apports en AGPI. Dans notre Ă©tude, l’épiphyton est ainsi significativement plus concentrĂ© en AGPI que le seston. A l’interface air-eau, le neuston se caractĂ©rise de plus, par une forte accumulation de matiĂšre organique d’origine allochtone qui, dans le cas d’une pluie de pollen, reprĂ©sente une source de carbone et d’AGPI non nĂ©gligeable pour certaines espĂšces de microcrustacĂ©s. Dans les zones littorales Ă  macrophytes, la complĂ©mentaritĂ© des espĂšces de cladocĂšres entraine donc une utilisation plus complĂšte des ressources. La diversitĂ© des compartiments trophiques, associĂ©e Ă  la diversitĂ© des microcrustacĂ©s, permet donc probablement une optimisation du transfert des AGPI vers les niveaux trophiques supĂ©rieurs.Areas with littoral macrophytes play an important functional role in freshwater systems. In addition to the high productivity recorded in such areas, they also shelter a high diversity of organisms. However, possible links between spatial heterogeneity, biodiversity and energy pathways are still poorly known. As they constitute the major link between microorganisms and species higher in the food web, microcrustaceans play a key role in the transfer of polyunsaturated fatty acids (PUFA) to organisms at higher trophic levels. In this study, we wanted to assess if microcrustaceans diversity encountered in macrophytes littoral zones would lead to a variability of PUFA transfer in the food web. This work combined controlled conditions experiment and studies run in natural environments in order to help the interpretation of results from lipid analysis, isotopic analysis and fatty acid isotope analysis. Our results indicate that there are no differences of PUFA concentrations between cladocerans from a macrophyte littoral zone when they were exposed to the same pool of dietary PUFA. Hence, in heterogeneous feeding habitats such as macrophytes zones where these cladocerans often co-exist, foraging behavior of cladoceran species more than differences of metabolism may be crucial for determining PUFA transfer to upper trophic levels. In addition to seston, our study shows indeed that some cladoceran species are able to forage on the epiphytic and neustonic compartments. Lipid analyses highlight moreover that the diversity of trophic compartments lead to a variability of PUFA inputs to primary consumers. In our study, the epiphytic compartment is indeed significantly more concentrated in PUFA than seston. At the air-water interface, neuston is moreover characterized by important allochthonous organic matter accumulation. During a pollen rain, this organic matter represents an important source of carbon and PUFA for some microcrustacean species. In macrophytes littoral zones, cladocerans complementarity leads to a more complete use of PUFA sources. The association of trophic compartment diversity and microcrustacean diversity probably allows an optimization of PUFA transfer to higher trophic levels

    Diversité des interactions trophiques à l'interface microorganismes - microcrustacés dans une zone littorale à macrophytes (conséquences sur le transfert des acides gras essentiels)

    No full text
    Les zones littorales à macrophytes ont un rÎle fonctionnel important dans les hydrosystÚmes fluviaux. Outre leur forte productivité, ces milieux se caractérisent également par une forte biodiversité. Cependant, les liens pouvant exister entre hétérogénéité spatiale, biodiversité et flux de matiÚre restent encore peu connus. En milieu aquatique, les microcrustacés représentent un maillon clef entre les microorganismes eucaryotes, qui sont les principaux producteurs d acide gras polyinsaturés (AGPI), et le compartiment piscicole. Dans ce travail de thÚse, nous avons donc cherché à savoir comment la diversité des cladocÚres rencontrée dans une zone littorale à macrophytes pouvait affecter le transfert des AGPI dans les réseaux trophiques. L approche vers laquelle s est orienté ce travail combine à la fois des études menées en milieu contrÎlé, permettant des expériences de nutrition, ainsi que des études menées en milieu naturel. Cette double approche permet de faciliter l interprétation des résultats issus des analyses lipidiques, isotopiques et isotopiques de composés spécifiques. Nos résultats montrent ainsi qu il n existe pas de variabilité dans les capacités d accumulation et de bioconversion des AGPI chez les cladocÚres coexistant dans une zone littorale à macrophytes. D aprÚs ces résultats, il semble donc que le principal facteur influençant la variabilité des transferts d AGPI vers le compartiment piscicole soit la stratégie alimentaire et le compartiment trophique exploité par les différentes espÚces de microcrustacés. En effet, outre le seston, notre étude montre que certaines espÚces de cladocÚres rencontrées en zone littorale sont capables d exploiter l épiphyton et le neuston. Les analyses lipidiques mettent de plus en évidence, que la diversité des compartiments trophiques exploités s accompagne d une variabilité d apports en AGPI. Dans notre étude, l épiphyton est ainsi significativement plus concentré en AGPI que le seston. A l interface air-eau, le neuston se caractérise de plus, par une forte accumulation de matiÚre organique d origine allochtone qui, dans le cas d une pluie de pollen, représente une source de carbone et d AGPI non négligeable pour certaines espÚces de microcrustacés. Dans les zones littorales à macrophytes, la complémentarité des espÚces de cladocÚres entraine donc une utilisation plus complÚte des ressources. La diversité des compartiments trophiques, associée à la diversité des microcrustacés, permet donc probablement une optimisation du transfert des AGPI vers les niveaux trophiques supérieurs.Areas with littoral macrophytes play an important functional role in freshwater systems. In addition to the high productivity recorded in such areas, they also shelter a high diversity of organisms. However, possible links between spatial heterogeneity, biodiversity and energy pathways are still poorly known. As they constitute the major link between microorganisms and species higher in the food web, microcrustaceans play a key role in the transfer of polyunsaturated fatty acids (PUFA) to organisms at higher trophic levels. In this study, we wanted to assess if microcrustaceans diversity encountered in macrophytes littoral zones would lead to a variability of PUFA transfer in the food web. This work combined controlled conditions experiment and studies run in natural environments in order to help the interpretation of results from lipid analysis, isotopic analysis and fatty acid isotope analysis. Our results indicate that there are no differences of PUFA concentrations between cladocerans from a macrophyte littoral zone when they were exposed to the same pool of dietary PUFA. Hence, in heterogeneous feeding habitats such as macrophytes zones where these cladocerans often co-exist, foraging behavior of cladoceran species more than differences of metabolism may be crucial for determining PUFA transfer to upper trophic levels. In addition to seston, our study shows indeed that some cladoceran species are able to forage on the epiphytic and neustonic compartments. Lipid analyses highlight moreover that the diversity of trophic compartments lead to a variability of PUFA inputs to primary consumers. In our study, the epiphytic compartment is indeed significantly more concentrated in PUFA than seston. At the air-water interface, neuston is moreover characterized by important allochthonous organic matter accumulation. During a pollen rain, this organic matter represents an important source of carbon and PUFA for some microcrustacean species. In macrophytes littoral zones, cladocerans complementarity leads to a more complete use of PUFA sources. The association of trophic compartment diversity and microcrustacean diversity probably allows an optimization of PUFA transfer to higher trophic levels.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF

    Trophic partitioning among three littoral microcrustaceans: relative importance of periphyton as food resource

    No full text
    The high species richness of zooplankton communities in macrophytes littoral zones could result from the diversity of potential trophic niches found in such environment. In macrophytes littoral zones, in addition to phytoplankton, neustonic, benthic and epiphytic biofilms can also be potential components of the microcrustacean diet. Here, we investigated the ability of three large cladocerans: Daphnia longispina, Simocephalus vetulus and Eurycercus lamellatus, to develop on periphyton as their only food source or as a complement to a phytoplankton resource in scarce supply. D. longispina exhibited a very low growth and reproduction rates on the periphytic resource and as S. vetulus seems unable to scrape on periphyton. In contrast, E. lamellatus could not grow on phytoplankton, and appears to be an obligatory periphyton scraper. This latter finding contrasts with previous studies suggesting that E. lamellatus could be able to scrap periphyton as well as filter-feed on suspended matter. These differences in feeding strategy probably reflect the different trophic niches occupied by these three species in macrophytes littoral zones, and may explain at least in part their ability to coexist in the same environment

    Assessment of airborne microorganisms by real-time PCR: optimistic findings and research challenges

    No full text
    Most airborne microorganisms are natural components of our ecosystem. Soil, vegetation and animals, including humans, are sources for aerial release of these living or dead cells. In the past, assessment of airborne microorganisms was mainly restricted to occupational health concerns. Indeed, in several occupations, exposure to very high concentrations of non-infectious airborne bacteria and fungi, result in allergenic, toxic or irritant reactions. Recently, the threat of bioterrorism and pandemics have highlighted the urgent need to increase knowledge of bioaerosol ecology. More fundamentally, airborne bacterial and fungal communities begin to draw much more consideration from environmental microbiologists, who have neglected this area for a long time. This increased interest of scientists is to a great part due to the development and use of real-time PCR techniques to identify and quantify airborne microorganisms. Even if the advantages of the PCR technology are obvious, researchers are confronted with new problems. This review describes the methodological state of the art in bioaerosols field and emphasizes the future challenges and perspectives of the real-time PCR-based methods for airborne microorganism studies
    corecore