303 research outputs found

    Body mass index and subfertility: multivariable regression and Mendelian randomization analyses in the Norwegian Mother, Father and Child Cohort Study.

    Get PDF
    Funder: Folkehelseinstituttet/Norwegian Institute of Public HealthFunder: Norwegian Ministry of Health and Care ServicesFunder: Norwegian Ministry of Health and Care Services and the Norwegian Ministry of Education and ResearchFunder: Norwegian Ministry of Education and ResearchStudy questionWhat is the association between BMI and subfertility?Summary answerWe observed a J-shaped relationship between BMI and subfertility in both sexes, when using both a standard multivariable regression and Mendelian randomization (MR) analysis.What is known alreadyHigh BMI in both women and men is associated with subfertility in observational studies and this relationship is further substantiated by a few small randomized controlled trials of weight reduction and success of assisted reproduction. Women with low BMI also have lower conception rates with assisted reproduction technologies.Study design, size, durationCohort study (the Norwegian Mother, Father and Child Cohort Study), 28 341 women and 26 252 men, recruited from all over Norway between 1999 and 2008.Participants/materials, setting, methodsWomen (average age 30, average BMI 23.1 kg/m2) and men (average age 33, average BMI 25.5 kg/m2) had available genotype data and provided self-reported information on time-to-pregnancy and BMI. A total of 10% of couples were subfertile (time-to-pregnancy ≥12 months).Main results and the role of chanceOur findings support a J-shaped association between BMI and subfertility in both sexes using multivariable logistic regression models. Non-linear MR validated this relationship. A 1 kg/m2 greater genetically predicted BMI was linked to 18% greater odds of subfertility (95% CI 5% to 31%) in obese women (≥30.0 kg/m2) and 15% lower odds of subfertility (-24% to -2%) in women with BMI Limitations, reasons for cautionThe main limitations of our study were that we did not know whether the subfertility was driven by the women, men or both; the exclusive consideration of individuals of northern European ancestry; and the limited amount of participants with obesity or BMI values Wider implications of the findingsOur results support a causal effect of obesity on subfertility in women and men. Our findings also expand the current evidence by indicating that individuals with BMI values Study funding/competing interest(s)The MoBa Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Norwegian Ministry of Education and Research. This project received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (grant agreement No 947684). It was also partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 262700. Open Access funding was provided by the Folkehelseinstituttet/Norwegian Institute of Public Health. D.A.L. is a UK National Institute for Health Research Senior Investigator (NF-SI-0611-10196) and is supported by the US National Institutes of Health (R01 DK10324) and a European Research Council Advanced Grant (DevelopObese; 669545). The funders had no role in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication. D.A.L. receives (or has received in the last 10 years) research support from National and International government and charitable bodies, Roche Diagnostics and Medtronic for research unrelated to the current work. The rest of the authors declare that no competing interests exist.Trial registration numberN/A

    Investigating Intra-Individual Networks of Response Inhibition and Interference Resolution using 7T MRI

    Get PDF
    Response inhibition and interference resolution are often considered subcomponents of an overarching inhibition system that utilizes the so-called cortico-basal-ganglia loop. Up until now, most previous functional magnetic resonance imaging (fMRI) literature has compared the two using between-subject designs, pooling data in the form of a meta-analysis or comparing different groups. Here, we investigate the overlap of activation patterns underlying response inhibition and interference resolution on a within-subject level, using ultra-high field MRI. In this model-based study, we furthered the functional analysis with cognitive modelling techniques to provide a more in-depth understanding of behaviour. We applied the stop-signal task and multi-source interference task to measure response inhibition and interference resolution, respectively. Our results lead us to conclude that these constructs are rooted in anatomically distinct brain areas and provide little evidence for spatial overlap. Across the two tasks, common BOLD responses were observed in the inferior frontal gyrus and anterior insula. Interference resolution relied more heavily on subcortical components, specifically nodes of the commonly referred to indirect and hyperdirect pathways, as well as the anterior cingulate cortex, and pre-supplementary motor area. Our data indicated that orbitofrontal cortex activation is specific to response inhibition. Our model-based approach provided evidence for the dissimilarity in behavioural dynamics between the two tasks. The current work exemplifies the importance of reducing inter-individual variance when comparing network patterns and the value of UHF-MRI for high resolution functional mapping

    Association of medically assisted reproduction with offspring cord blood DNA methylation across cohorts

    Get PDF
    STUDY QUESTION: Is cord blood DNA methylation associated with having been conceived by medically assisted reproduction? SUMMARY ANSWER: This study does not provide strong evidence of an association of conception by medically assisted reproduction with variation in infant blood cell DNA methylation. WHAT IS KNOWN ALREADY: Medically assisted reproduction consists of procedures used to help infertile/subfertile couples conceive, including ART. Due to its importance in gene regulation during early development programming, DNA methylation and its perturbations associated with medically assisted reproduction could reveal new insights into the biological effects of assisted reproductive technologies and potential adverse offspring outcomes. STUDY DESIGN, SIZE, DURATION: We investigated the association of DNA methylation and medically assisted reproduction using a case-control study design (N = 205 medically assisted reproduction cases and N = 2439 naturally conceived controls in discovery cohorts; N = 149 ART cases and N = 58 non-ART controls in replication cohort). PARTICIPANTS/MATERIALS, SETTINGS, METHODS: We assessed the association between medically assisted reproduction and DNA methylation at birth in cord blood (205 medically assisted conceptions and 2439 naturally conceived controls) at >450 000 CpG sites across the genome in two sub-samples of the UK Avon Longitudinal Study of Parents and Children (ALSPAC) and two sub-samples of the Norwegian Mother, Father and Child Cohort Study (MoBa) by meta-analysis. We explored replication of findings in the Australian Clinical review of the Health of adults conceived following Assisted Reproductive Technologies (CHART) study (N = 149 ART conceptions and N = 58 controls). MAIN RESULTS AND THE ROLE OF CHANCE: The ALSPAC and MoBa meta-analysis revealed evidence of association between conception by medically assisted reproduction and DNA methylation (false-discovery-rate-corrected P-value < 0.05) at five CpG sites which are annotated to two genes (percentage difference in methylation per CpG, cg24051276: Beta = 0.23 (95% CI 0.15,0.31); cg00012522: Beta = 0.47 (95% CI 0.31, 0.63); cg17855264: Beta = 0.31 (95% CI 0.20, 0.43); cg17132421: Beta = 0.30 (95% CI 0.18, 0.42); cg18529845: Beta = 0.41 (95% CI 0.25, 0.57)). Methylation at three of these sites has been previously linked to cancer, aging, HIV infection and neurological diseases. None of these associations replicated in the CHART cohort. There was evidence of a functional role of medically assisted reproduction-induced hypermethylation at CpG sites located within regulatory regions as shown by putative transcription factor binding and chromatin remodelling. LIMITATIONS, REASONS FOR CAUTIONS: While insufficient power is likely, heterogeneity in types of medically assisted reproduction procedures and between populations may also contribute. Larger studies might identify replicable variation in DNA methylation at birth due to medically assisted reproduction. WIDER IMPLICATIONS OF THE FINDINGS: Newborns conceived with medically assisted procedures present with divergent DNA methylation in cord blood white cells. If these associations are true and causal, they might have long-term consequences for offspring health. STUDY FUNDING/COMPETING INTERESTS(S): This study has been supported by the US National Institute of Health (R01 DK10324), the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 669545, European Union's Horizon 2020 research and innovation programme under Grant agreement no. 733206 (LifeCycle) and the NIHR Biomedical Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. Methylation data in the ALSPAC cohort were generated as part of the UK BBSRC funded (BB/I025751/1 and BB/I025263/1) Accessible Resource for Integrated Epigenomic Studies (ARIES, http://www.ariesepigenomics.org.uk). D.C., J.J., C.L.R. D.A.L and H.R.E. work in a Unit that is supported by the University of Bristol and the UK Medical Research Council (Grant nos. MC_UU_00011/1, MC_UU_00011/5 and MC_UU_00011/6). B.N. is supported by an NHMRC (Australia) Investigator Grant (1173314). ALSPAC GWAS data were generated by Sample Logistics and Genotyping Facilities at Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America) using support from 23andMe. The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, NIH/NIEHS (Contract no. N01-ES-75558), NIH/NINDS (Grant nos. (i) UO1 NS 047537-01 and (ii) UO1 NS 047537-06A1). For this work, MoBa 1 and 2 were supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01-ES-49019) and the Norwegian Research Council/BIOBANK (Grant no. 221097). This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, Project no. 262700.D.A.L. has received support from national and international government and charity funders, as well as from Roche Diagnostics and Medtronic for research unrelated to this study. The other authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A

    Associations between insomnia and pregnancy and perinatal outcomes: Evidence from Mendelian randomization and multivariable regression analyses

    Get PDF
    BACKGROUND: Insomnia is common and associated with adverse pregnancy and perinatal outcomes in observational studies. However, those associations could be vulnerable to residual confounding or reverse causality. Our aim was to estimate the association of insomnia with stillbirth, miscarriage, gestational diabetes (GD), hypertensive disorders of pregnancy (HDP), perinatal depression, preterm birth (PTB), and low/high offspring birthweight (LBW/HBW). METHODS AND FINDINGS: We used 2-sample mendelian randomization (MR) with 81 single-nucleotide polymorphisms (SNPs) instrumenting for a lifelong predisposition to insomnia. Our outcomes included ever experiencing stillbirth, ever experiencing miscarriage, GD, HDP, perinatal depression, PTB (gestational age 4,500 grams). We used data from women of European descent (N = 356,069, mean ages at delivery 25.5 to 30.0 years) from UK Biobank (UKB), FinnGen, Avon Longitudinal Study of Parents and Children (ALSPAC), Born in Bradford (BiB), and the Norwegian Mother, Father and Child Cohort (MoBa). Main MR analyses used inverse variance weighting (IVW), with weighted median and MR-Egger as sensitivity analyses. We compared MR estimates with multivariable regression of insomnia in pregnancy on outcomes in ALSPAC (N = 11,745). IVW showed evidence of an association of genetic susceptibility to insomnia with miscarriage (odds ratio (OR): 1.60, 95% confidence interval (CI): 1.18, 2.17, p = 0.002), perinatal depression (OR 3.56, 95% CI: 1.49, 8.54, p = 0.004), and LBW (OR 3.17, 95% CI: 1.69, 5.96, p < 0.001). IVW results did not support associations of insomnia with stillbirth, GD, HDP, PTB, and HBW, with wide CIs including the null. Associations of genetic susceptibility to insomnia with miscarriage, perinatal depression, and LBW were not observed in weighted median or MR-Egger analyses. Results from these sensitivity analyses were directionally consistent with IVW results for all outcomes, with the exception of GD, perinatal depression, and PTB in MR-Egger. Multivariable regression showed associations of insomnia at 18 weeks of gestation with perinatal depression (OR 2.96, 95% CI: 2.42, 3.63, p < 0.001), but not with LBW (OR 0.92, 95% CI: 0.69, 1.24, p = 0.60). Multivariable regression with miscarriage and stillbirth was not possible due to small numbers in index pregnancies. Key limitations are potential horizontal pleiotropy (particularly for perinatal depression) and low statistical power in MR, and residual confounding in multivariable regression. CONCLUSIONS: In this study, we observed some evidence in support of a possible causal relationship between genetically predicted insomnia and miscarriage, perinatal depression, and LBW. Our study also found observational evidence in support of an association between insomnia in pregnancy and perinatal depression, with no clear multivariable evidence of an association with LBW. Our findings highlight the importance of healthy sleep in women of reproductive age, though replication in larger studies, including with genetic instruments specific to insomnia in pregnancy are important

    450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy

    Get PDF
    Background: Epigenetic modifications, such as DNA methylation, due to in utero exposures may play a critical role in early programming for childhood and adult illness. Maternal smoking is a major risk factor for multiple adverse health outcomes in children, but the underlying mechanisms are unclear. Objective: We investigated epigenome-wide methylation in cord blood of newborns in relation to maternal smoking during pregnancy. Methods: We examined maternal plasma cotinine (an objective biomarker of smoking) measured during pregnancy in relation to DNA methylation at 473, 844 CpG sites (CpGs) in 1, 062 newborn cord blood samples from the Norwegian Mother and Child Cohort Study (MoBa) using the Infinium HumanMethylation450 BeadChip (450K). Results: We found differential DNA methylation at epigenome-wide statistical significance (p-value < 1.06 × 10–7) for 26 CpGs mapped to 10 genes. We replicated findings for CpGs in AHRR, CYP1A1, and GFI1 at strict Bonferroni-corrected statistical significance in a U.S. birth cohort. AHRR and CYP1A1 play a key role in the aryl hydrocarbon receptor signaling pathway, which mediates the detoxification of the components of tobacco smoke. GFI1 is involved in diverse developmental processes but has not previously been implicated in responses to tobacco smoke. Conclusions: We identified a set of genes with methylation changes present at birth in children whose mothers smoked during pregnancy. This is the first study of differential methylation across the genome in relation to maternal smoking during pregnancy using the 450K platform. Our findings implicate epigenetic mechanisms in the pathogenesis of the adverse health outcomes associated with this important in utero exposure.publishedVersio
    corecore