149 research outputs found

    Luminescence stability improvement in liposome-based homogeneous luminescence resonance energy transfer

    Get PDF
    A stable liposome-based time-resolved luminescence resonance energy transfer (TR-LRET) assay was developed based on the interaction of biotinylated lipids and streptavidin. Eu ion chelated to 4,4,4-trifluoro-1-(2- naphthalenyl)-1,3-butanedione and trioctylphosphine oxide was incorporated into liposomes. Acceptor-labeled streptavidin bound to biotinylated lipids of the liposomes enables TR-LRET. A stable assay performance was achieved by optimization. High Eu signal and stability, low variation, and sensitivity below 100 pM for free biotin was achieved by incorporating the chelate into liposomes containing cholesterol in a carbonate buffer. Potentially, the stable assay compared with the assay without cholesterol offers an improved platform to liposome-based detection systems. © 2013 Elsevier Inc

    Homogeneous peptide-break assay for luminescent detection of enzymatic protein post-translational modification activity utilizing charged peptides

    Get PDF
    We have developed a rapid and sensitive universal peptide-based time-resolved luminescence assay for detection of enzymatic post-translational modifications (PTMs). PTMs play essential roles in intracellular signaling and cell regulation, thus providing functional protein diversity in cell. Due this, impaired PTM patterns have been linked to multiple disease states. Clear link between PTMs and pathological conditions have also driven assay development further, but still today most of the methodologies are based on single-specificity or group-specific PTM-recognition. We have previously introduced leuzine-zipper based peptide-break technology as a viable option for universal PTM detection. Here, we introduce peptide-break technology utilizing single-label homogeneous quenching resonance energy transfer (QRET) and charge-based peptide-peptide interaction. We demonstrate the functionality of the new assay concept in phosphorylation, deacetylation, and citrullination. In a comparable study between previously introduced leucine-zipper and the novel charge-based approach, we found equal PTM detection performance and sensitivity, but the peptide design for new targets is simplified with the charged peptides. The new concept allows the use of short </p

    Label-Free Time-Gated Luminescent Detection Method for the Nucleotides with Varying Phosphate Content

    Get PDF
    A new label-free molecular probe for luminescent nucleotide detection in neutral aqueous solution is presented. Phosphate-containing molecules, such as nucleotides possess vital role in cell metabolism, energy economy, and various signaling processes. Thus, the monitoring of nucleotide concentration and nucleotide related enzymatic reactions is of high importance. Two component lanthanide complex formed from Tb(III) ion carrier and light harvesting antenna, readily distinguishes nucleotides containing different number of phosphates and enable direct detection of enzymatic reactions converting nucleotide triphosphate (NTP) to nucleotide di/monophosphate or the opposite. Developed sensor enables the detection of enzymatic activity with a low nanomolar sensitivity, as highlighted with K-Ras and apyrase enzymes in their hydrolysis assays performed in a high throughput screening compatible 384-well plate format.</p

    Decreased plasma kallikrein activity is associated with reduced kidney function in individuals with type 1 diabetes

    Get PDF
    Aims/hypothesis Plasma kallikrein is the central mediator of the plasma kallikrein-kinin system, which is involved both in vascular control and thrombin formation cascades. The plasma kallikrein-kinin system has also been considered protective in pathological conditions, but the impact of plasma kallikreins on diabetic nephropathy remains unknown. The objective of this cross-sectional study was to explore the association of plasma kallikrein with diabetic nephropathy. Methods We measured plasma kallikrein activity in 295 individuals with type 1 diabetes at various stages of diabetic nephropathy, and we tested the genetic association between the plasma kallikrein-kinin system and kidney function in 4400 individuals with type 1 diabetes. Results Plasma kallikrein activity was associated with diabetes duration (p p KNG1 rs5030062 and rs710446 variants, which have previously been associated with increased plasma pre-kallikrein and/or factor XI (FXI) protein levels, were associated with higher eGFR (rs5030062 beta = 0.03, p = 0.01; rs710446 beta = 0.03, p = 0.005) in the FinnDiane cohort of 4400 individuals with type 1 diabetes. Conclusions/interpretation Plasma kallikrein activity and genetic variants known to increase the plasma kallikrein level are associated with higher eGFR in individuals with type 1 diabetes, suggesting that plasma kallikrein might have a protective effect in diabetic nephropathy.</div

    Nanomolar Protein-Protein Interaction Monitoring with a Label-Free Protein-Probe Technique

    Get PDF
    Protein-protein interactions (PPIs) are an essential part of correct cellular functionality, making them increasingly interesting drug targets. While Forster resonance energy transfer-based methods have traditionally been widely used for PPI studies, label-free techniques have recently drawn significant attention. These methods are ideal for studying PPIs, most importantly as there is no need for labeling of either interaction partner, reducing potential interferences and overall costs. Already, several different label-free methods are available, such as differential scanning calorimetry and surface plasmon resonance, but these biophysical methods suffer from low to medium throughput, which reduces suitability for high-throughput screening (HTS) of PPI inhibitors. Differential scanning fluorimetry, utilizing external fluorescent probes, is an HTS compatible technique, but high protein concentration is needed for experiments. To improve the current concepts, we have developed a method based on time-resolved luminescence, enabling PPI monitoring even at low nanomolar protein concentrations. This method, called the protein probe technique, is based on a peptide conjugated with Eu3+ chelate, and it has already been applied to monitor protein structural changes and small molecule interactions at elevated temperatures. Here, the applicability of the protein probe technique was demonstrated by monitoring single-protein pairing and multiprotein complexes at room and elevated temperatures. The concept functionality was proven by using both artificial and multiple natural protein pairs, such as KRAS and eIF4A together with their binding partners, and C-reactive protein in a complex with its antibody

    Single-Peptide TR-FRET Detection Platform for Cysteine-Specific Post-Translational Modifications

    Get PDF
    Post-translational modifications (PTMs) are one of the most important regulatory mechanisms in cells, and they play key roles in cell signaling both in health and disease. PTM catalyzing enzymes have become significant drug targets, and therefore, tremendous interest has been focused on the development of broad-scale assays to monitor several different PTMs with a single detection platform. Most of the current methodologies suffer from low throughput or rely on antibody recognition, increasing the assay costs, and decreasing the multifunctionality of the assay. Thus, we have developed a sensitive time-resolved Forster resonance energy transfer (TR-FRET) detection method for PTMs of cysteine residues using a single-peptide approach performed in a 384-well format. In the developed assay, the enzyme-specific biotinylated substrate peptide is post-translationally modified at the cysteine residue, preventing the subsequent thiol coupling with a reactive AlexaFluor 680 acceptor dye. In the absence of enzymatic activity, increase in the TR-FRET signal between the biotin-bound Eu(III)-labeled streptavidin donor and the cysteine-coupled AlexaFluor 680 acceptor dye is observed. We demonstrate the detection concept with cysteine modifying S-nitrosylation and ADP-ribosylation reactions using a chemical nitric oxide donor S-nitrosoglutathione and enzymatic ADP-ribosyltransferase PtxS1-subunit of pertussis toxin, respectively. As a proof of concept, three peptide substrates derived from the small GTPase K-Ras and the inhibitory alpha-subunit of the heterotrimeric G-protein G alpha i showed expected functionality in both chemical and enzymatic assays. Measurements yielded signal-to-background ratios of 28.7, 33.0, and 8.7 between the modified and the nonmodified substrates for the three peptides in the S-nitrosylation assay, 5.8 in the NAD(+) hydrolysis assay, and 6.8 in the enzymatic ADP-ribosyltransferase inhibitor dose-response assay. The developed antibody-free assay for cysteine-modifying enzymes provides a detection platform with low nanomolar peptide substrate consumption, and the assay is potentially applicable to investigate various cysteine-modifying enzymes in a high throughput compatible format

    Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    Get PDF
    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate large-scale, cell-based 3D assays in basic research, drug discovery, and target validation.</p

    A comparison of acoustic and linguistics methodologies for Alzheimer’s dementia recognition

    Get PDF
    In the light of the current COVID-19 pandemic, the need for remote digital health assessment tools is greater than ever. This statement is especially pertinent for elderly and vulnerable populations. In this regard, the INTERSPEECH 2020 Alzheimer’s Dementia Recognition through Spontaneous Speech (ADReSS) Challenge offers competitors the opportunity to develop speech and language-based systems for the task of Alzheimer’s Dementia (AD) recognition. The challenge data consists of speech recordings and their transcripts, the work presented herein is an assessment of different contemporary approaches on these modalities. Specifically, we compared a hierarchical neural network with an attention mechanism trained on linguistic features with three acoustic-based systems: (i) Bag-of-Audio-Words (BoAW) quantising different low-level descriptors, (ii) a Siamese Network trained on log-Mel spectrograms, and (iii) a Convolutional Neural Network (CNN) end-to-end system trained on raw waveforms. Key results indicate the strength of the linguistic approach over the acoustics systems. Our strongest test-set result was achieved using a late fusion combination of BoAW, End-to-End CNN, and hierarchical-attention networks, which outperformed the challenge baseline in both the classification and regression tasks

    Oro-facial pain experience among symphony orchestra musicians in Finland is associated with reported stress, sleep bruxism and disrupted sleep-Independent of the instrument group

    Get PDF
    Background To evaluate whether oro-facial pain experience was related to the type of musical instrument and to learn more about the roles of sleep and sleep-related issues in the pain among professional musicians. Objectives A standard questionnaire was sent to all Finnish symphony orchestras (n = 19), with altogether 1005 professional musicians and other personnel. Methods The questionnaire covered descriptive data, instrument group, items on perceived quality of sleep, possible sleep bruxism, stress experience and oro-facial pain experience during the past 30 days. Results In the present study, which included the musicians only, the response rate was 58.7% (n = 488). All orchestras participated in the study, and there was no significant difference in the response rate between the orchestras. The mean age of men (52.3%) was 47.7 (SD 10.3) and of women (47.7%) was 43.4 (SD 9.8) years (P <0.001). Overall, current pain in the oro-facial area was reported by 28.9%, frequent bruxism by 12.1% and frequent stress by 20.8%. According to Somers' d, there were statistically significant but moderate correlations between overall pain reports in the oro-facial area and disrupted sleep (d = 0.127, P = 0.001), sleep bruxism (d = 0.241, P <0.001) and stress experiences (d = 0.193, P <0.001). Logistic regression revealed, independent of the instrument group (string, woodwind, brass wind, percussion), that current oro-facial pain experience was significantly associated with disrupted sleep (P = 0.001), frequent sleep bruxism (P <0.001) and frequent stress (P = 0.002) experiences. Conclusions Among symphony orchestra musicians, oro-facial pain experience seems to be related to perceptions of stress, sleep bruxism and disrupted sleep rather than the instrument group.Peer reviewe
    • …
    corecore