9 research outputs found

    Perennojen menestyminen ja kukinta-ajat Pohjois-Suomessa 1979-1985

    Get PDF
    vKirjasto Aj-

    T Cell Epitopes in Coxsackievirus B4 Structural Proteins Concentrate in Regions Conserved between Enteroviruses

    Get PDF
    AbstractThe present study aimed to characterize systematically the target epitopes of T cell responses in CBV4 structural proteins. These were studied by synthesizing 86 overlapping 20-aa-long peptides covering the known sequence of CBV4 structural proteins and analyzing the proliferation responses of 18 CBV4-specific T cell lines against these peptides. Recognized peptides differed depending on the HLA-DR genotype of the T cell donor. They were concentrated to the VP4 and VP2 regions as six of seven common peptide epitopes located in this region, whereas there was only one in the VP3 region and none in the VP1 region. Peptides from conserved areas were recognized more often (on average, 15% of them stimulated each T cell line) than those derived from variable areas (3%) (P < 0.0001, Fisher's exact test). Some conserved peptides inducing T cell responsiveness in most subjects were identified, a knowledge which can be useful in the development of new synthetic vaccines

    The biodegradation of lactic acid-based poly(ester-urethanes)

    No full text

    Tracer Level Electrophilic Synthesis and Pharmacokinetics of the Hypoxia Tracer [F-18]EF5

    No full text
    2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide labeled with [F-18]-fluorine ([F-18]EF5), a promising tracer for tumor hypoxia, has previously been synthesized in low yields and low specific radioactivity. In pharmacokinetic evaluations, in the presence of non-radioactive EF5, a uniform and low background uptake and high in vivo stability of [F-18]EF5 have been demonstrated. Our purpose was to increase the specific radioactivity of [F-18]EF5 to enable to study the pharmacokinetics at trace level. [F-18]EF5 was synthesized using high specific radioactivity electrophilic [F-18]F-2 as labelling reagent. Biodistribution of [F-18]EF5 was determined in a prostate tumor mouse model, and formation of radiolabelled metabolites was studied in mouse, rat and human plasma. On average, 595 +/- 153 MBq of [F-18]EF5 was produced. Specific radioactivity was 6.6 +/- 1.9 GBq/mu mol and the radiochemical purity exceeded 99.0%. [F-18]EF5 was distributed uniformly in tissues, with highest uptake in liver, kidney, and intestine. Several radiolabelled metabolites were detected in mouse plasma and tissues, whereas low amounts of metabolites were detected in human and rat plasma. [F-18]EF5 was synthesized by electrophilic labelling with high quality and high yields. Pharmacokinetics of [F-18]EF5 was determined at trace level in several species. Our results suggest that the trace-level approach does not affect the biodistribution of [F-18]EF5. Extensive metabolism was seen in mouse

    A pan-cancer analysis shows immunoevasive characteristics in NRF2 hyperactive squamous malignancies

    No full text
    The NRF2 pathway is frequently activated in various cancer types, yet a comprehensive analysis of its effects across different malignancies is currently lacking. We developed a NRF2 activity metric and utilized it to conduct a pan-cancer analysis of oncogenic NRF2 signaling. We identified an immunoevasive phenotype where high NRF2 activity is associated with low interferon-gamma (IFNγ), HLA-I expression and T cell and macrophage infiltration in squamous malignancies of the lung, head and neck area, cervix and esophagus. Squamous NRF2 overactive tumors comprise a molecular phenotype with SOX2/TP63 amplification, TP53 mutation and CDKN2A loss. These immune cold NRF2 hyperactive diseases are associated with upregulation of immunomodulatory NAMPT, WNT5A, SPP1, SLC7A11, SLC2A1 and PD-L1. Based on our functional genomics analyses, these genes represent candidate NRF2 targets, suggesting direct modulation of the tumor immune milieu. Single-cell mRNA data shows that cancer cells of this subtype exhibit decreased expression of IFNγ responsive ligands, and increased expression of immunosuppressive ligands NAMPT, SPP1 and WNT5A that mediate signaling in intercellular crosstalk. In addition, we discovered that the negative relationship of NRF2 and immune cells are explained by stromal populations of lung squamous cell carcinoma, and this effect spans multiple squamous malignancies based on our molecular subtyping and deconvolution data
    corecore