74 research outputs found

    Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest

    Get PDF
    Competition for canopy space is a process of major importance in forest dynamics. Although virgin and old-growth European beech (Fagus sylvatica L.) forests in Europe have been studied for many years, there are to date no studies of individual-tree crown plasticity and the way this is influenced by local neighborhood interactions in these forests. In this study, we analyzed crown plasticity and local neighborhood interactions of individual trees in the upper canopy of the old-growth beech forests of Serrahn, northeast Germany. In a 2.8-ha sample plot, we measured crown radii of all upper canopy trees and analyzed the direction and extent of crown asymmetry. Size, relative position, and distance of neighboring trees were used to construct vectors of neighborhood asymmetry within different distances from target trees. The crowns of beech trees showed strong morphological plasticity. Mean absolute and relative displacement of crown centers from the stem base were 1.95 m and 0.37, respectively. Circular–circular rank correlation coefficients between the direction of crown displacement and the direction of neighborhood pressure showed that trees strongly positioned their crowns away from local neighbors. Highest correlation coefficients were obtained when basal area and relative position of neighboring trees within a radial distance of 12 m were considered. Clark and Evans index and Ripley’s K-function showed that crowns were more regularly distributed than stems. Projected canopy cover was about 10% higher than canopy cover with simulated circular crowns. We conclude that the crowns of older beech trees have a high ability to plastically respond to changes in the local canopy conditions, enabling very effective exploitation of canopy space

    The effects of stand characteristics on the understory vegetation in Quercus petraea and Q. cerris dominated forests

    Get PDF
    The shelterwood system used in Hungary has many effects on the composition and structure of the herb layer. The aim of our study was to identify the main variables that affect the occurence of herbs and seedlings in Turkey oak-sessile oak (Quercus cerris and Q. petraea) stands. The study was carried out in the Bükk mountains, Hungary. 122 sampling plots were established in 50-150 year old oak forests, where we studied the species composition and structure of the understorey and overstorey. The occurence of herbs was affected by canopy closure, the heterogenity and patchiness of the stand, the slope and the east-west component of the aspect. The composition of saplings was significantly explained by the ratio of the two major oak species in the stand and the proximity of the adult plants. An important result for forest management was that sessile oaks were able to regenerate almost only where they were dominant in the overstorey

    Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood

    Get PDF
    Although recent anthropogenic effects on the global nitrogen (N) cycle have been significant, the consequences of increased anthropogenic N on terrestrial ecosystems are unclear. Studies of the impact of increased reactive N on forest ecosystems—impacts on hydrologic and gaseous loss pathways, retention capacity, and even net primary productivity— have been particularly limited by a lack of long-term baseline biogeochemical data. Stable nitrogen isotope analysis (ratio of ¹⁵N to ¹⁴N, termed δ¹⁵N) of wood chronologies offers the potential to address changes in ecosystem N cycling on millennial timescales and across broad geographic regions. Currently, nearly 50 studies have been published utilizing wood δ¹⁵N records; however, there are significant differences in study design and data interpretation. Here, we identify four categories of wood δ¹⁵N studies, summarize the common themes and primary findings of each category, identify gaps in the spatial and temporal scope of current wood δ¹⁵N chronologies, and synthesize methodological frameworks for future research by presenting eight suggestions for common methodological approaches and enhanced integration across studies. Wood δ¹⁵N records have the potential to provide valuable information for interpreting modern biogeochemical cycling. This review serves to advance the utility of this technique for long-term biogeochemical reconstructions

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF

    Renaturierung und Management von Heiden

    No full text

    Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest

    Get PDF
    Competition for canopy space is a process of major importance in forest dynamics. Although virgin and old-growth European beech (Fagus sylvatica L.) forests in Europe have been studied for many years, there are to date no studies of individual-tree crown plasticity and the way this is influenced by local neighborhood interactions in these forests. In this study, we analyzed crown plasticity and local neighborhood interactions of individual trees in the upper canopy of the old-growth beech forests of Serrahn, northeast Germany. In a 2.8-ha sample plot, we measured crown radii of all upper canopy trees and analyzed the direction and extent of crown asymmetry. Size, relative position, and distance of neighboring trees were used to construct vectors of neighborhood asymmetry within different distances from target trees. The crowns of beech trees showed strong morphological plasticity. Mean absolute and relative displacement of crown centers from the stem base were 1.95 m and 0.37, respectively. Circular–circular rank correlation coefficients between the direction of crown displacement and the direction of neighborhood pressure showed that trees strongly positioned their crowns away from local neighbors. Highest correlation coefficients were obtained when basal area and relative position of neighboring trees within a radial distance of 12 m were considered. Clark and Evans index and Ripley’s K-function showed that crowns were more regularly distributed than stems. Projected canopy cover was about 10% higher than canopy cover with simulated circular crowns. We conclude that the crowns of older beech trees have a high ability to plastically respond to changes in the local canopy conditions, enabling very effective exploitation of canopy space

    Renaturierung und Management von Heiden

    No full text
    corecore