276 research outputs found
In praise of partially interpretable predictors
Often there is an uninterpretable model that is statistically as good as, if not better than, a successful interpretable model. Accordingly, if one restricts attention to interpretable models, then one may sacrifice predictive power or other desirable properties. A minimal condition for an interpretable, usually parametric, model to be better than another model is that the first should have smallermean-squared error or integratedmean-squared error.We show through a series of examples that this is often not the case and give the asymptotic forms of a variety of interpretable, partially interpretable, and noninterpretable methods. We find techniques that combine aspects of both interpretability and noninterpretability in models seem to give the best results
Extended Kramers-Moyal analysis applied to optical trapping
The Kramers-Moyal analysis is a well established approach to analyze
stochastic time series from complex systems. If the sampling interval of a
measured time series is too low, systematic errors occur in the analysis
results. These errors are labeled as finite time effects in the literature. In
the present article, we present some new insights about these effects and
discuss the limitations of a previously published method to estimate
Kramers-Moyal coefficients at the presence of finite time effects. To increase
the reliability of this method and to avoid misinterpretations, we extend it by
the computation of error estimates for estimated parameters using a Monte Carlo
error propagation technique. Finally, the extended method is applied to a data
set of an optical trapping experiment yielding estimations of the forces acting
on a Brownian particle trapped by optical tweezers. We find an increased
Markov-Einstein time scale of the order of the relaxation time of the process
which can be traced back to memory effects caused by the interaction of the
particle and the fluid. Above the Markov-Einstein time scale, the process can
be very well described by the classical overdamped Markov model for Brownian
motion.Comment: 14 pages, 18 figure
Safety surveillance and the estimation of risk in select populations: Flexible methods to control for confounding while targeting marginal comparisons via standardization
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152565/1/sim8410_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152565/2/sim8410.pd
Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map
© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.Peer reviewe
Non-linear regression models for Approximate Bayesian Computation
Approximate Bayesian inference on the basis of summary statistics is
well-suited to complex problems for which the likelihood is either
mathematically or computationally intractable. However the methods that use
rejection suffer from the curse of dimensionality when the number of summary
statistics is increased. Here we propose a machine-learning approach to the
estimation of the posterior density by introducing two innovations. The new
method fits a nonlinear conditional heteroscedastic regression of the parameter
on the summary statistics, and then adaptively improves estimation using
importance sampling. The new algorithm is compared to the state-of-the-art
approximate Bayesian methods, and achieves considerable reduction of the
computational burden in two examples of inference in statistical genetics and
in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and
Computin
On the Schoenberg Transformations in Data Analysis: Theory and Illustrations
The class of Schoenberg transformations, embedding Euclidean distances into
higher dimensional Euclidean spaces, is presented, and derived from theorems on
positive definite and conditionally negative definite matrices. Original
results on the arc lengths, angles and curvature of the transformations are
proposed, and visualized on artificial data sets by classical multidimensional
scaling. A simple distance-based discriminant algorithm illustrates the theory,
intimately connected to the Gaussian kernels of Machine Learning
A regularity class for the roots of nonnegative functions
We investigate the regularity of the positive roots of a non-negative
function of one-variable. A modified H\"older space is
introduced such that if then . This provides sufficient conditions to overcome the usual limitation
in the square root case () for H\"older functions that
need be no more than in general. We also derive bounds on the wavelet
coefficients of , which provide a finer understanding of its local
regularity.Comment: 12 page
Wavelet penalized likelihood estimation in generalized functional models
The paper deals with generalized functional regression. The aim is to
estimate the influence of covariates on observations, drawn from an exponential
distribution. The link considered has a semiparametric expression: if we are
interested in a functional influence of some covariates, we authorize others to
be modeled linearly. We thus consider a generalized partially linear regression
model with unknown regression coefficients and an unknown nonparametric
function. We present a maximum penalized likelihood procedure to estimate the
components of the model introducing penalty based wavelet estimators.
Asymptotic rates of the estimates of both the parametric and the nonparametric
part of the model are given and quasi-minimax optimality is obtained under
usual conditions in literature. We establish in particular that the LASSO
penalty leads to an adaptive estimation with respect to the regularity of the
estimated function. An algorithm based on backfitting and Fisher-scoring is
also proposed for implementation. Simulations are used to illustrate the finite
sample behaviour, including a comparison with kernel and splines based methods
Tune in to your emotions: a robust personalized affective music player
The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listenersâ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application
- âŠ