232 research outputs found

    Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy

    Get PDF
    Amplitude-modulation (tapping mode) atomic force microscopy is a technique for high resolution imaging of a wide variety of surfaces in air and liquid environments. Here by using the virial theorem and energy conservation principles we have derived analytical relationships between the oscillation amplitude, phase shift, and average tip-surface forces. We find that the average value of the interaction force and oscillation and the average power dissipated by the tip-surface interaction are the quantities that control the amplitude reduction. The agreement obtained between analytical and numerical results supports the analytical method.This work has been supported by the Dirección General de Investigación Científica y Técnica (PB98-0471) and the European Union (BICEPS, BIO4-CT-2112). A. S. P. acknowledges financial support from the Comunidad Autónoma de Madrid.Peer reviewe

    Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann

    Full text link
    On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simulation parameters, simplifies the analysis of the system. For practical applications it should allow to freely specify the direction of the flux, and it should be straight forward to implement in three dimensions. Furthermore, especially for parallelized solvers it is of great advantage if the boundary condition can be applied locally, involving only information available on the current lattice site. We meet this need by describing in detail how to transfer the approach suggested by Zou and He to a D3Q19 lattice. The boundary condition acts locally, is independent of the details of the relaxation process during collision and contains no artificial slip. In particular, the case of an on-site no-slip boundary condition is naturally included. We test the boundary condition in several setups and confirm that it is capable to accurately model the velocity field up to second order and does not contain any numerical slip.Comment: 13 pages, 4 figures, revised versio

    Makorin 1 controls embryonic patterning by alleviating Bruno1-mediated repression of oskar translation.

    Get PDF
    Makorins are evolutionary conserved proteins that contain C3H-type zinc finger modules and a RING E3 ubiquitin ligase domain. In Drosophila, maternal Makorin 1 (Mkrn1) has been linked to embryonic patterning but the mechanism remained unsolved. Here, we show that Mkrn1 is essential for axis specification and pole plasm assembly by translational activation of oskar (osk). We demonstrate that Mkrn1 interacts with poly(A) binding protein (pAbp) and binds specifically to osk 3' UTR in a region adjacent to A-rich sequences. Using Drosophila S2R+ cultured cells we show that this binding site overlaps with a Bruno1 (Bru1) responsive element (BREs) that regulates osk translation. We observe increased association of the translational repressor Bru1 with osk mRNA upon depletion of Mkrn1, indicating that both proteins compete for osk binding. Consistently, reducing Bru1 dosage partially rescues viability and Osk protein level in ovaries from Mkrn1 females. We conclude that Mkrn1 controls embryonic patterning and germ cell formation by specifically activating osk translation, most likely by competing with Bru1 to bind to osk 3' UTR

    Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility

    Get PDF
    In an experiment at the Riga sodium dynamo facility, a slowly growing magnetic field eigenmode has been detected over a period of about 15 seconds. For a slightly decreased propeller rotation rate, additional measurements showed a slow decay of this mode. The measured results correspond satisfactory with numerical predictions for the growth rates and frequencies

    Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations

    Full text link
    During the last decade, lattice-Boltzmann (LB) simulations have been improved to become an efficient tool for determining the permeability of porous media samples. However, well known improvements of the original algorithm are often not implemented. These include for example multirelaxation time schemes or improved boundary conditions, as well as different possibilities to impose a pressure gradient. This paper shows that a significant difference of the calculated permeabilities can be found unless one uses a carefully selected setup. We present a detailed discussion of possible simulation setups and quantitative studies of the influence of simulation parameters. We illustrate our results by applying the algorithm to a Fontainebleau sandstone and by comparing our benchmark studies to other numerical permeability measurements in the literature.Comment: 14 pages, 11 figure

    Genotyping and antibiotic resistance of thermophilic Campylobacter isolated from chicken and pig meat in Vietnam

    Get PDF
    Background Campylobacter species are recognized as the most common cause of foodborne bacterial gastroenteritis in humans. In this study nine Campylobacter strains isolated from chicken meat and pork in Hanoi, Vietnam, were characterized using molecular methods and tested for antibiotic resistance. Results The nine isolates (eight C. jejuni and one C. coli) were identified by multiplex PCR, and tested for the presence or absence of 29 gene loci associated with virulence, lipooligosaccharide (LOS) biosynthesis and further functions. flaA typing, multilocus sequence typing and microarray assay investigation showed a high degree of genetic diversity among these isolates. In all isolates motility genes (flaA, flaB, flhA, fliM), colonization associated genes (cadF, docB), toxin production genes (cdtA, cdtB, secD, secF), and the LOS biosynthesis gene pglB were detected. Eight gene loci (fliY, virB11, Cje1278, Cj1434c, Cj1138, Cj1438c, Cj1440c, Cj1136) could not be detected by PCR. A differing presence of the gene loci ciaB (22.2 %), Cje1280 (77.8 %), docC (66.7 %), and cgtB (55.6 %) was found. iamA, cdtC, and the type 6 secretion system were present in all C. jejuni isolates but not in C. coli. flaA typing resulted in five different genotypes within C. jejuni, MLST classified the isolates into seven sequence types (ST-5155, ST-6736, ST-2837, ST-4395, ST-5799, ST-4099 and ST-860). The microarray assay analysis showed a high genetic diversity within Vietnamese Campylobacter isolates which resulted in eight different types for C. jejuni. Antibiotic susceptibility profiles showed that all isolates were sensitive to gentamicin and most isolates (88.8 %) were sensitive to chloramphenicol, erythromycin and streptomycin. Resistance rates to nalidixic acid, tetracycline and ciprofloxacin were 88.9, 77.8 and 66.7 %, respectively. Conclusions To the best of our knowledge, this study is the first report that shows high genetic diversity and remarkable antibiotic resistance of Campylobacter strains isolated from meat in Vietnam which can be considered of high public health significance. These preliminary data show that large scale screenings are justified to assess the relevance of Campylobacter infections on human health in Vietnam
    corecore