343 research outputs found

    Classification of specimen density in Laser Powder Bed Fusion (L-PBF) using in-process structure-borne acoustic process emissions

    Get PDF
    Currently, the laser powder bed fusion (L-PBF) process cannot offer a reproducible and predefined quality of the processed parts. Recent research on process monitoring focuses strongly on integrated optical measurement technology. Besides optical sensors, acoustic sensors also seem promising. Previous studies have shown the potential of analyzing structure-borne and air-borne acoustic emissions in laser welding. Only a few works evaluate the potential that lies in the usage during the L-PBF process. This work shows how the approach to structure-borne acoustic process monitoring can be elaborated by correlating acoustic signals to statistical values indicating part quality. Density measurements according to Archimedes’ principle are used to label the layer-based acoustic data and to measure the quality. The data set is then treated as a classification problem while investigating the applicability of existing artificial neural network algorithms to match acoustic data with density measurements. Furthermore, this work investigates the transferability of the approach to more complex specimens

    Simple Three-Integral Scale-Free Galaxy Models

    Full text link
    The Jeans equations give the second moments or stresses required to support a stellar population against the gravity field. A general solution of the Jeans equations for arbitrary axisymmetric scale-free densities in flattened scale-free potentials is given. A two-parameter subset of the solution for the second moments for the self-consistent density of the power-law models, which have exactly spheroidal equipotentials, is examined in detail. In the spherical limit, the potential of these models reduces to that of the singular power-law spheres. We build the physical three-integral distribution functions that correspond to the flattened stellar components. Next, we attack the problem of finding distribution functions associated with the Jeans solutions in flattened scale-free potentials. The third or partial integral introduced by de Zeeuw, Evans and Schwarzschild for Binney's model is generalised to thin and near-thin orbits moving in arbitrary axisymmetric scale-free potentials. The partial integral is a modification of the total angular momentum. For the self-consistent power-law models, we show how this enables the construction of simple three-integral distribution functions. The connexion between these approximate distribution functions and the Jeans solutions is discussed in some detail.Comment: 14 pages, 7 postscript figures, to appear in Monthly Notice

    Recovering the mass and the charge of a Reissner-Nordstr\"om black hole by an inverse scattering experiment

    Full text link
    In this paper, we study inverse scattering of massless Dirac fields that propagate in the exterior region of a Reissner-Nordstr\"om black hole. Using a stationary approach we determine precisely the leading terms of the high-energy asymptotic expansion of the scattering matrix that, in turn, permit us to recover uniquely the mass of the black hole and its charge up to a sign

    Cluster-based density-functional approach to quantum transport through molecular and atomic contacts

    Get PDF
    We present a cluster-based density-functional approach to model charge transport through molecular and atomic contacts. The electronic structure of the contacts is determined in the framework of density functional theory, and the parameters needed to describe transport are extracted from finite clusters. A similar procedure, restricted to nearest-neighbor interactions in the electrodes, has been presented by Damle et al. [Chem. Phys. 281, 171 (2002)]. Here, we show how to systematically improve the description of the electrodes by extracting bulk parameters from sufficiently large metal clusters. In this way we avoid problems arising from the use of nonorthogonal basis functions. For demonstration we apply our method to electron transport through Au contacts with various atomic-chain configurations and to a single-atom contact of Al.Comment: 18 pages, 13 figure

    Astrometric Microlensing with the GAIA satellite

    Get PDF
    GAIA is the ``super-Hipparcos'' survey satellite selected as a Cornerstone 6 mission by the European Space Agency. GAIA can measure microlensing by the small excursions of the light centroid that occur during events. The all-sky source-averaged astrometric microlensing optical depth is about 10^{-5}. Some 25000 sources will have a significant variation of the centroid shift, together with a closest approach, during the lifetime of the mission. A covariance analysis is used to study the propagation of errors and the estimation of parameters from realistic sampling of the GAIA datastream of transits in the along-scan direction during microlensing events. Monte Carlo simulations are used to study the 2500 events for which the mass can be recovered with an error of less than 50 per cent. These high quality events are dominated by disk lenses within a few tens of parsecs and source stars within a few hundred parsecs. We show that the local mass function can be recovered from the high quality sample to good accuracy. GAIA is the first instrument with the capabilities of measuring the mass locally in very faint objects like black holes and very cool white and brown dwarfs. For only 5 per cent of all astrometric events will GAIA record even one photometric datapoint. There is a need for a dedicated telescope that densely samples the Galactic Centre and spiral arms, as this can improve the accuracy of parameter estimation by a factor of about 10.Comment: 18 pages, 18 figures, MNRAS, in pres

    Scattering theory for Klein-Gordon equations with non-positive energy

    Full text link
    We study the scattering theory for charged Klein-Gordon equations: \{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x, D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)= f_{1}, {array}. where: \epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x), describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential v(x)v(x) and magnetic potential b(x)\vec{b}(x). The flow of the Klein-Gordon equation preserves the energy: h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+ \bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x) \d x. We consider the situation when the energy is not positive. In this case the flow cannot be written as a unitary group on a Hilbert space, and the Klein-Gordon equation may have complex eigenfrequencies. Using the theory of definitizable operators on Krein spaces and time-dependent methods, we prove the existence and completeness of wave operators, both in the short- and long-range cases. The range of the wave operators are characterized in terms of the spectral theory of the generator, as in the usual Hilbert space case

    A clock network for geodesy and fundamental science

    Get PDF
    Leveraging the unrivaled performance of optical clocks in applications in fundamental physics beyond the standard model, in geo-sciences, and in astronomy requires comparing the frequency of distant optical clocks truthfully. Meeting this requirement, we report on the first comparison and agreement of fully independent optical clocks separated by 700 km being only limited by the uncertainties of the clocks themselves. This is achieved by a phase-coherent optical frequency transfer via a 1415 km long telecom fiber link that enables substantially better precision than classical means of frequency transfer. The fractional precision in comparing the optical clocks of three parts in 101710^{17} was reached after only 1000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than with any other existing frequency transfer method. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.Comment: 14 pages, 3 figures, 1 tabl

    Extracting science from surveys of our Galaxy

    Full text link
    Our knowledge of the Galaxy is being revolutionised by a series of photometric, spectroscopic and astrometric surveys. Already an enormous body of data is available from completed surveys, and data of ever increasing quality and richness will accrue at least until the end of this decade. To extract science from these surveys we need a class of models that can give probability density functions in the space of the observables of a survey -- we should not attempt to "invert" the data from the space of observables into the physical space of the Galaxy. Currently just one class of model has the required capability, so-called "torus models". A pilot application of torus models to understanding the structure of the Galaxy's thin and thick discs has already produced two significant results: a major revision of our best estimate of the Sun's velocity with respect to the Local Standard of Rest, and a successful prediction of the way in which the vertical velocity dispersion in the disc varies with distance from the Galactic plane.Comment: 13 pages. Invited review to appear in Pramana - journal of physics (Indian Academy of Sciences
    corecore