9 research outputs found

    Alignment autocollimator-based microscope adjustment and its quality assessment

    No full text
    We report a custom microscope setup whose mechanical and optical components are adjusted by the means of an alignment autocollimator (AAC). Residual centring and angular misalignments of the components towards the microscope’s optical axis are below 500 μm and 1 mrad, respectively. We further perform measurements of dot structures with diameters close to the diffraction limit (nominal diameter = 200 nm; chrome on glass mask) as suitable measures for the evaluation of the microscope’s adjustment and to determine/ visualize the optical aberrations, which affect the image formation of microscopes

    Introducing molasses as an alternative feedstock into itaconate production using Ustilago sp

    No full text
    In this work, we established an efficient process for the production of itaconate from the regionally sourced industrial side-stream molasses using Ustilago cynodontis and Ustilago maydis. While being relatively cheap and more environmentally friendly than refined sugars, there are some major challenges to overcome when working with molasses. Some of those challenges are a high nitrogen load, unknown impurities in the feedstock, and high amounts of ill-favoured carbon sources, such as sucrose or lactate. We could show that the activity of the sucrose-hydrolysing enzyme invertase plays a crucial role in the efficiency of the process and that the fructose utilisation differs between the two strains used in this work. Thus, with a higher invertase activity, the ability to convert fructose into the desired product itaconate, and an overall higher tolerance towards undesired substances in molasses, U. maydis is better equipped for the process on the alternative feedstock molasses than U. cynodontis. The established process with U. maydis reached competitive yields of up to 0.38 g g−1 and a titre of more than 37 g L−1. This shows that an efficient and cost-effective itaconate production process is generally feasible using U. maydis, which has the potential to greatly increase the sustainability of industrial itaconate production
    corecore