13 research outputs found

    Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome

    Get PDF
    Background: Whereas mutations affecting the helical domain of type I procollagen classically cause Osteogenesis Imperfecta (OI), helical mutations near the amino (N)-proteinase cleavage site have been suggested to result in a mixed OI/Ehlers-Danlos syndrome (EDS)-phenotype. Methods: We performed biochemical and molecular analysis of type I (pro-) collagen in a cohort of seven patients referred with a clinical diagnosis of EDS and showing only subtle signs of OI. Transmission electron microscopy of the dermis was available for one patient. Results: All of these patients harboured a COL1A1 / COL1A2 mutation residing within the most N-terminal part of the type I collagen helix. These mutations affect the rate of type I collagen N-propeptide cleavage and disturb normal collagen fibrillogenesis. Importantly, patients with this type of mutation do not show a typical OI phenotype but mainly present as EDS patients displaying severe joint hyperlaxity, soft and hyperextensible skin, abnormal wound healing, easy bruising, and sometimes signs of arterial fragility. In addition, they show subtle signs of OI including blue sclerae, relatively short stature and osteopenia or fractures. Conclusion: Recognition of this distinct phenotype is important for accurate genetic counselling, clinical management and surveillance, particularly in relation to the potential risk for vascular rupture associated with these mutations. Because these patients present clinical overlap with other EDS subtypes, biochemical collagen analysis is necessary to establish the correct diagnosis

    Cohen syndrome resulting from a novel large intragenic COH1 deletion segregating in an isolated Greek island population

    No full text
    Cohen syndrome, caused by mutations in the COH1 gene, is an autosomal recessive disorder consisting of mental retardation, microcephaly, growth delay, severe myopia, progressive chorioretinal dystrophy, facial anomalies, slender limbs with narrow hands and feet, tapered fingers, short stature, kyphosis and/or scoliosis, pectus carinatum, joint hypermobility, pes calcaneovalgus, and, variably, truncal obesity. Here, we describe the clinical and molecular findings in 14 patients from an isolated Greek island population. The clinical phenotype was fairly homogeneous, although microcephaly was not constant, and some patients had severe visual disability. All patients were homozygous for a novel intragenic COH1 deletion spanning exon 6 to exon 16, Suggesting a founder effect. The discovers, of this Mutation has made carrier detection and prenatal diagnosis possible ill this population. (C) 2008 Wiley-Liss, Inc

    CHD2 pathogenic nonsense variant in a three-generation family with variable phenotype and a paracentric inversion 16: Case report

    No full text
    Chromosomal inversions are usually balanced structural chromosomal rearrangements that do not have an impact on the clinical phenotype of a carrier. The main clinical consequence of inversions is the risk for unbalanced gametes and offspring with severe phenotypes. Rarely though, inversions are associated with a phenotype, mainly due to submicroscopic Copy Number Variants (CNVs) or disruption at the breakpoints of a functionally important gene and/or genomic elements. In this study, a paracentric inversion of chromosome 16 [inv(16)(q22.3q24.1)] was identified in a three-generation family with discordant phenotypes with/without epilepsy and/or intellectual impairment, as well as with an unaffected carrier. This finding was confirmed by fluorescence in situ hybridization (FISH). Genetic investigation, initially with chromosomal microarray (CMA), did not reveal any copy number variants. Finally, Clinical Exome Sequencing (CES), detected the presence of a pathogenic nonsense variant (rs797044912) in the Chromodomain Helicase DNA-binding protein 2 (CHD2) gene [NM_001271.4:c.5035C>T p.(Arg1679Ter)]. CHD2 pathogenic variants have been associated with Developmental and Epileptic Encephalopathy-94 (DEE-94), a rare yet severe condition, characterized by developmental delay, seizures with an early onset, intellectual impairment, autism spectrum disorder, and sometimes behavioral issues. Family testing showed that the variant segregated with phenotypic heterogeneity in the affected individuals and appears to be causative. To the best of our knowledge, this is the first CHD2 pathogenic variant segregating in a three-generation family and the fourth familial case reported. These results further support our previous findings that familial, balanced rearrangements with discordant phenotypes in the same family are, in the vast majority, coincidental

    Homoplasmy of the G7444A mtDNA and heterozygosity of the GJB2 c.35delG mutations in a family with hearing loss

    No full text
    Objective: Mitochondrial mutations have been shown to be responsible for syndromic as well as non-syndromic hearing loss. The G7444A mitochondrial DNA mutation affects COI/the precursor of tRNA(Ser(UCN)), encoding the first subunit of cytochrome oxidase. Here we report on the first Greek family with the G7444A mitochondrial DNA mutation. Methods: Clinical, cytogenetic, and molecular methods were employed in this study. Results: We describe the high variability of phenotypes among three family members harboring the G7444A mutation and also the frequent GJB2 c.35delG mutation of the nuclear genome in heterozygosity. Their phenotypes ranged from normal hearing to deafness, while the proband presented with several other symptoms. Conclusions: The G7444A mitochondrial DNA mutation has been reported in only a few cases worldwide, alone or in cosegregation with other mitochondrial DNA mutations, but to our knowledge, never before in coexistence with the GJB2 c.35delG mutation. (C) 2010 Elsevier Ireland Ltd. All rights reserved

    35-Year Follow-Up of a Case of Ring Chromosome 2: Array-CGH Analysis and Literature Review of the Ring Syndrome

    No full text
    Cote et al. [1981] suggested that ring chromosomes with or without deletions share a common pattern of phenotypic anomalies, regardless of which chromosome is involved. The phenotype of this ‘general ring syndrome’ consists of growth failure without malformations, few or no minor anomalies, and mild to moderate mental retardation. We reconsidered the ring chromosome 2 case previously published by Cote et al. [1981], and we characterized it by array CGH, polymorphic markers as well as subtelomere MLPA and FISH analysis. A terminal deletion (q37.3qter) of maternal origin of the long arm of the ring chromosome 2 was detected and confirmed by all the above-mentioned methods. Ring chromosome 2 cases are exceedingly rare. Only 18 cases, including the present one, have been published so far, and our patient is the longest reported survivor, with a 35-year follow-up, and the third case characterized by array-CGH analysis. (C) 2015 S. Karger AG, Base

    HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle.

    Get PDF
    International audienceCornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations
    corecore