37 research outputs found

    Inhibition of mitochondrial cyclophilin D, a downstream target of glycogen synthase kinase 3α, improves sperm motility

    No full text
    Abstract Background Cyclophilin D (CypD) negatively regulates ATP production by opening of the mitochondrial permeability transition pore. This study aimed to understand the role of CypD in sperm motility regulation. Methods Changes in CypD during sperm capacitation and its interaction with glycogen synthase kinase 3α (GSK3α), a key kinase regulating sperm motility, were examined in mouse spermatozoa. The effects of CypD inhibitor cyclosporin A (CsA) and GSK3 inhibitor 6-bromo-indirubin-3'-oxime (BIO) on sperm motility, p-GSK3α(Ser21), mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (MMP), and ATP production were examined. The effect of proteasome inhibitor MG115 on the cellular levels of CypD was examined. Results In cauda epididymal spermatozoa, GSK3α was found in both cytosolic and mitochondrial fractions whereas CypD was primarily found in the mitochondrial fraction together with ATP synthase F1 subunit alpha (ATP5A), a mitochondrial marker. GSK3α and CypD were co-localized in the sperm midpiece. Interaction between GSK3α and CypD was identified in co-immunoprecipitation. CsA, a CypD inhibitor, significantly increased sperm motility, tyrosine phosphorylation, mPTP closing, MMP, and ATP levels in spermatozoa, suggesting that CypD acts as a negative regulator of sperm function. Under capacitation condition, both GSK3α and CypD were decreased in spermatozoa but ATP5A was not. The GSK3 inhibitor BIO markedly increased p-GSK3α(Ser21) and decreased CypD but significantly increased mPTP closing, MMP, ATP production, and motility of spermatozoa. This suggests that inhibitory phosphorylation of GSK3α is coupled with degradation of CypD, potentiating the mitochondrial function. Degradation of CypD was attenuated by MG115, indicative of involvement of the ubiquitin proteasome system. Conclusions During sperm capacitation, CypD act as a downstream target of GSK3α can be degraded via the ubiquitin proteasome system, stimulating mitochondrial function and sperm motility

    Isosorbide, a versatile green chemical: Elucidating its ADME properties for safe use

    No full text
    Isosorbide, an environmentally friendly and renewable substance, finds extensive application in diverse fields, such as a bisphenol A substitute, polymers, functional materials, organic solvents, fuels, and pharmaceuticals. Despite its increasing interest and widespread usage, there remains a notable absence of available reports regarding its absorption, distribution, metabolism, and excretion (ADME) properties. This study endeavors to investigate the ADME characteristics of isosorbide in rats. Isosorbide levels in biological samples were quantified based on the analytical method using gas chromatography-mass spectrometry (GC-MS). Following administration, isosorbide exhibited rapid absorption and elimination, with a bioavailability of 96.1%. The metabolic stability assay indicated that isosorbide remained stable during metabolism. The majority of absorbed isosorbide was promptly excreted, with urinary excretion as the primary route. This study furnishes valuable insights into the ADME of isosorbide, contributing to its safety assessment and fostering its continued application across various domains

    Comparative toxicological evaluation of nonylphenol and nonylphenol polyethoxylates using human keratinocytes

    No full text
    <p>Nonylphenol polyethoxylates (NPEOs) are a major group of nonionic surfactants widely used in various detergents, cleaners, plastics, papers, and agro-chemical products. Nonylphenol (NP), which is a final degraded metabolite derived from NPEOs, has been reported as an endocrine disrupter, known to mimic or disturb reproductive hormone functions. Concern about the hazards of NP and NPEOs has generated legal restrictions and action plans worldwide. Considering the fact that NP and NPEOs are majorly used in the production of products such as detergents, shampoos, and cosmetics which frequently come into contact with the skin, we investigated the effects of NP and NPEOs on a human keratinocyte cell line (HaCaT). In this study, the toxicity of NP and NPEOs was screened in HaCaT cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide thiazolyl blue assay and Western blotting. The potential cytotoxicity of substitutes was assessed by dose-response assays, relative cell viability, and genotoxicity caused by specific alterations in DNA damage response proteins (including ataxia-telangiectasia mutated, p53, Chk1, Chk2, and Histone H2A.X). We demonstrated that NP and NPEOs are toxic to HaCaT cells, as revealed by the decreased cell viability after 24 h treatment. NPs and NPEOs also induced apoptosis and DNA damage as shown by the activation of Poly(ADP-ribose) polymerase, Caspase-3, and Histone H2A.X.</p

    Effects of L- and T-type Ca2+ channel blockers on spermatogenesis and steroidogenesis in the prepubertal mouse testis

    No full text
    To assess the involvement of L-type and T-type Ca2+ channel blockers in inducing male infertility.Prepubertal male mice were fed Ca2+ channel blockers nifedipine and ethosuximide for 20 days at dosages below maximum tolerated dose (MTD) and assayed for gross morphological changes in the testis such as body weight, testis size and weight. Sperm and Leydig cell counting were conducted concomitantly with serum testosterone level measurement by radioimmunoassay (RIA) and StAR protein mRNA measurement by reverse transcription and polymerase chain reaction (RT-PCR).A chronic exposure to nifedipine or ethosuximide caused a significant reduction in body weight, testis size/weight and sperm production in a dose-dependent fashion associated with a spermatogenic arrest largely at the elongating spermatid stage. The number of Leydig cells, the serum testosterone level but not the luteinizing hormone level, and the content of StAR protein mRNA were also drastically reduced relative to the controls.Both T- and L-type Ca2+ channel blockers play an adverse role in normal spermatogenesis and steroidogenesis partly by blocking postmeiotic germ cell maturation and/or by abrogating StAR protein expression, contributing to male sterility. Therefore, any therapeutic application of Ca2+ channel blockers must be used with caution due to its potential adverse side effects on male infertility.The authors would like to thank Dr. Kistler at the University of S. Carolina, for providing anti-TP2 antibodies. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government MEST (KRF-2010-0015672) to C. Min

    Detection of Matrix Metalloproteinase Activity by Bioluminescence via Intein-Mediated Biotinylation of Luciferase

    No full text
    We report bioluminescence analysis of matrix metalloproteinase (MMP) activity in biological substances using a surface-bound luciferase probe. Intein-fused luciferase protein enables site-specific biotinylation of luciferase in the presence of N-terminus cysteine-biotin via intein-mediated splicing process, resulting in a strong association with high bioluminescence signal onto a NeutrAvidin-coated surface. When the peptide substrate for MMP-7 was inserted into a region between luciferase and intein, the biotinylated probe detected MMP-7 activity by cleaving the peptide, and surface-induced bioluminescence signal was strongly reduced in the MMP-secreted media or mouse tissue extracts, compared with that in MMP-deficient control set. Our approach is anticipated to be useful for generating biotinylated proteins and for their applications in diagnosing MMP activity in human diseases

    Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    No full text
    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts

    Pharmacokinetics and Metabolism of Acetyl Triethyl Citrate, a Water-Soluble Plasticizer for Pharmaceutical Polymers in Rats

    No full text
    Acetyl triethyl citrate (ATEC) is a water-soluble plasticizer used in pharmaceutical plasticized polymers. In this study, the pharmacokinetics and metabolism of ATEC were investigated using liquid chromatography&#8211;tandem mass spectrometry (LC&#8211;MS/MS) in rats. Plasma protein precipitation with methanol was used for sample preparation. For chromatographic separation, a C18 column was used. The mobile phases consisted of 0.1% formic acid and 90% acetonitrile, and gradient elution was used. The following precursor-product ion pairs were selected for reaction monitoring analysis: 319.1 m/z &#8594; 157 m/z for ATEC and 361.2 m/z &#8594; 185.1 m/z for tributyl citrate (internal standard) in positive ion mode. The LC&#8211;MS/MS method was fully validated and successfully applied to a pharmacokinetic study of ATEC in rats. The pharmacokinetic study showed that the volume of distribution and mean residence time of ATEC were higher after oral administration than after intravenous administration, pointing to extensive first-pass metabolism and distribution in tissue. In addition, the plasma concentration profile of the postulated metabolites of ATEC was investigated in plasma, urine, and feces. The resulting data indicated that ATEC was extensively metabolized and excreted mainly as metabolites rather than as the parent form. The developed analytical method and the data on the pharmacokinetics and metabolism of ATEC may be useful for understanding the safety and toxicity of ATEC

    Regulation of Phosphorylation of Glycogen Synthase Kinase 3α and the Correlation with Sperm Motility in Human

    No full text
    Purpose: To unravel the mechanism regulating the phosphorylation of glycogen synthase kinase 3 (GSK3) and the correlation between the inhibitory phosphorylation of GSK3α and sperm motility in human. Materials and Methods: The phosphorylation and priming phosphorylated substrate-specific kinase activity of GSK3 were examined in human spermatozoa with various motility conditions. Results: In human spermatozoa, GSK3α/β was localized in the head, midpiece, and principal piece of tail and p-GSK3α(Ser21) was enriched in the midpiece. The ratio of p-GSK3α(Ser21)/GSK3α was positively coupled with normal sperm motility criteria of World Health Organization. In high-motility spermatozoa, p-GSK3α(Ser21) phosphotyrosine (p-Tyr) proteins but p-GSK3α(Tyr279) markedly increased together with decreased kinase activity of GSK3 after incubation in Ca2+ containing medium. In high-motility spermatozoa, p-GSK3α(Ser21) levels were negatively coupled with kinase activity of GSK3, and which was deregulated in low-motility spermatozoa. In high-motility spermatozoa, 6-bromo-indirubin-3’-oxime, an inhibitor of kinase activity of GSK3 increased p-GSK3α(Ser21) and p-Tyr proteins. p-GSK3α(Ser21) and p-Tyr protein levels were decreased by inhibition of PKA and Akt. Calyculin A, a protein phosphatase-1/2A inhibitor, markedly increased the p-GSK3α(Ser21) and p-Tyr proteins, and significantly increased the motility of low-motility human spermatozoa. Conclusions: Down regulation of kinase activity of GSK3α by inhibitory phosphorylation was positively coupled with human sperm motility, and which was regulated by Ca2+, PKA, Akt, and PP1. Small-molecule inhibitors of GSK3 and PP1 can be considered to potentiate human sperm motility
    corecore