1,003 research outputs found

    Theory and Simulations of Refractive Substructure in Resolved Scatter-Broadened Images

    Full text link
    At radio wavelengths, scattering in the interstellar medium distorts the appearance of astronomical sources. Averaged over a scattering ensemble, the result is a blurred image of the source. However, Narayan & Goodman (1989) and Goodman & Narayan (1989) showed that for an incomplete average, scattering introduces refractive substructure in the image of a point source that is both persistent and wideband. We show that this substructure is quenched but not smoothed by an extended source. As a result, when the scatter-broadening is comparable to or exceeds the unscattered source size, the scattering can introduce spurious compact features into images. In addition, we derive efficient strategies to numerically compute realistic scattered images, and we present characteristic examples from simulations. Our results show that refractive substructure is an important consideration for ongoing missions at the highest angular resolutions, and we discuss specific implications for RadioAstron and the Event Horizon Telescope.Comment: Equation numbering in appendix now matches published version. Two minor typos correcte

    Size of the Vela Pulsar's Emission Region at 18 cm Wavelength

    Full text link
    We present measurements of the linear diameter of the emission region of the Vela pulsar at observing wavelength lambda=18 cm. We infer the diameter as a function of pulse phase from the distribution of visibility on the Mopra-Tidbinbilla baseline. As we demonstrate, in the presence of strong scintillation, finite size of the emission region produces a characteristic W-shaped signature in the projection of the visibility distribution onto the real axis. This modification involves heightened probability density near the mean amplitude, decreased probability to either side, and a return to the zero-size distribution beyond. We observe this signature with high statistical significance, as compared with the best-fitting zero-size model, in many regions of pulse phase. We find that the equivalent full width at half maximum of the pulsar's emission region decreases from more than 400 km early in the pulse to near zero at the peak of the pulse, and then increases again to approximately 800 km near the trailing edge. We discuss possible systematic effects, and compare our work with previous results

    Optimal Correlation Estimators for Quantized Signals

    Full text link
    Using a maximum-likelihood criterion, we derive optimal correlation strategies for signals with and without digitization. We assume that the signals are drawn from zero-mean Gaussian distributions, as is expected in radio-astronomical applications, and we present correlation estimators both with and without a priori knowledge of the signal variances. We demonstrate that traditional estimators of correlation, which rely on averaging products, exhibit large and paradoxical noise when the correlation is strong. However, we also show that these estimators are fully optimal in the limit of vanishing correlation. We calculate the bias and noise in each of these estimators and discuss their suitability for implementation in modern digital correlators.Comment: 8 Pages, 3 Figures, Submitted to Ap

    Ultra-High Resolution Intensity Statistics of a Scintillating Source

    Full text link
    We derive the distribution of flux density of a compact source exhibiting strong diffractive scintillation. Our treatment accounts for arbitrary spectral averaging, spatially-extended source emission, and the possibility of intrinsic variability within the averaging time, as is typical for pulsars. We also derive the modulation index and present a technique for estimating the self-noise of the distribution, which can be used to identify amplitude variations on timescales shorter than the spectral accumulation time. Our results enable a for direct comparison with ultra-high resolution observations of pulsars, particularly single-pulse studies with Nyquist-limited resolution, and can be used to identify the spatial emission structure of individual pulses at a small fraction of the diffractive scale.Comment: 14 Pages, 4 Figures, accepted for publication in Ap

    The history of Sutter\u27s Fort, 1839-1931

    Get PDF
    Of all the stories and articles written about Captain J.A. Sutter in recent years, not one of them has adequately covered the history of his famous Fort. To the layman the fort itself may seem unimportant, but when we stop to consider that it was an outpost of civilization penetrating the wilderness of Central California, offering shelter to those who pioneered before us; we must confess that its existence was necessary to protect and usher into full City-hood, the infant Sacramento, then known as New Helvetia

    Observation of neutron and x-ray sawteeth in Alcator

    Get PDF

    Effects of Intermittent Emission: Noise Inventory for Scintillating Pulsar B0834+06

    Full text link
    We compare signal and noise for observations of the scintillating pulsar B0834+06, using very-long baseline interferometry and a single-dish spectrometer. Comparisons between instruments and with models suggest that amplitude variations of the pulsar strongly affect the amount and distribution of self-noise. We show that noise follows a quadratic polynomial with flux density, in spectral observations. Constant coefficients, indicative of background noise, agree well with expectation; whereas second-order coefficients, indicative of self-noise, are about 3 times values expected for a pulsar with constant on-pulse flux density. We show that variations in flux density during the 10-sec integration account for the discrepancy. In the secondary spectrum, about 97% of spectral power lies within the pulsar's typical scintillation bandwidth and timescale; an extended scintillation arc contains about 3%. For a pulsar with constant on-pulse flux density, noise in the dynamic spectrum will appear as a uniformly-distributed background in the secondary spectrum. We find that this uniform noise background contains 95% of noise in the dynamic spectrum for interferometric observations; but only 35% of noise in the dynamic spectrum for single-dish observations. Receiver and sky dominate noise for our interferometric observations, whereas self-noise dominates for single-dish. We suggest that intermittent emission by the pulsar, on timescales < 300 microseconds, concentrates self-noise near the origin in the secondary spectrum, by correlating noise over the dynamic spectrum. We suggest that intermittency sets fundamental limits on pulsar astrometry or timing. Accounting of noise may provide means for detection of intermittent sources, when effects of propagation are unknown or impractical to invert.Comment: 38 pages, 10 figure
    • …
    corecore