23 research outputs found

    Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    Get PDF
    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 mu m, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread

    Pitfalls in Modeling Walls and Neutrals Physics in Gas Discharges Using Parallel Particle-in-Cell Monte Carlo Collision Algorithms

    Get PDF
    Owing to their ability to model the physics of low-pressure plasmas away from thermodynamical equilibrium, particle-in-cell (PIC) techniques have become one of the tools of choice to simulate the operation of many plasma devices. This trend is reinforced by the growing access to parallel computing resources which enables tackling problems that were previously intractable with PIC techniques. However, accurate modeling of these plasmas often depends critically on the detailed description of a variety of physical phenomena ranging from microscopic to macroscopic scale and from electrons' to neutral particles' timescale. Among those are coupling phenomena between charged particles and neutrals. We illustrate here how the implementation of simplified models for scattering kinematics, neutrals dynamics and particle-wall interaction can affect simulation results. Until the full breadth of these effects can be captured in models, these results underline the importance of using extensive parametric scans to assess the importance of these effects

    Controlled Electron Injection into Plasma Accelerators and Space Charge Estimates

    Get PDF
    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures. The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100 GV/m and 10-40 mu m, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread
    corecore