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Abstract. Laser-driven plasma-based accelerators are capable of producing ultrashort
electron bunches in which the longitudinal size is much smaller than the transverse size.
We present theoretical studies of the transport of such electron bunches in vacuum.
Space charge forces acting on the bunch are calculated using an ellipsoidal bunch
shape model. The effects of space charge forces and energy spread on longitudinal
and transverse bunch properties are evaluated for various bunch lengths, energies and
amount of charge.

INTRODUCTION

Plasma-based accelerators offer the possibility of providing compact, high energy
electron accelerators [1]. Plasmas can sustain ultrahigh electric fields, thus provid-
ing for rapid acceleration. In addition, plasma-based accelerators can generate ul-
trashort electron bunches with a large amount of electrons per bunch. In a plasma,
the wavelength of the accelerating field is the plasma wavelength, λp = 2πc/ωp,
where ωp = (4πnee

2/m0)
1/2 is the plasma frequency and ne is the electron plasma

density. In engineering units, the plasma wavelength is

λp[µm] � 330(ne[cm
−3])−1/2.

For example, a laser wakefield accelerator (LWFA) in the standard regime typically
has a density on the order of ne � 1018 cm−3 and a plasma wavelength on the
order of λp � 30 µm (100 fs). If a mono-energetic electron bunch is injected into a
wakefield such that it is accelerated while maintaining a small energy spread, then
it is necessary that the bunch occupy a small fraction of the wake period, i.e., the
bunch must be ultrashort, on the order of a few femtoseconds. Test particle simula-
tions of the colliding pulse LWFA injector [2] - [4], in which two counterpropagating
laser pulses are used to inject electrons from the background plasma directly into
the wake, indicate the production of a trapped bunch (∼ 107 electrons) with a low
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energy spread (< 1 %), low normalized emittance (∼ 1 mm-mrad), and of ultra-
short duration (∼ 1 fs) may be possible. Such test particle simulations, however,
neglected the space charge effects of the accelerated bunch.

Space charge effects can limit the amount of charge that can be transported
in an ultrashort, tightly focused electron bunch, i.e., space charge can lead to a
increase in both the longitudinal and transverse bunch dimensions. In a LWFA,
space charge effects may not be of concern while the bunch is in the plasma wave,
since the longitudinal and transverse fields of the wake are typically much greater
than the space charge forces of the bunch. This is not the case, however, as the
bunch exits the plasma into a vacuum region with no applied fields. In this case,
space charge can lead to a rapid blow-up of the bunch. This paper will model
the dynamics of ultrashort bunches in vacuum under the assumptions that (i) the
spatial extent of the bunch remains ellipsoidal and (ii) the charge density within
the bunch remains uniform.

INFINITE CYLINDRICAL BEAM

When a beam has a longitudinal size much larger than the transverse size, one
can assume that the space charge force that occurs on the beam is only transverse.
Since the longitudinal field is almost zero in this case, one can easily apply Gauss’s
law to calculate the transverse electric field. The radial electric field Er′ in the
beam frame (denoted by a prime) is given by

Er′ = ρ′r′/(2ε0), (1)

where ρ′ the charge density in the beam frame (a frame moving with the average
velocity of the beam electrons). The quantities in the lab frame are related to those
in the beam frame by the Lorentz transforms [5],

E = γ(E′ − β ×B′)− γ2(γ + 1)−1β(β · E′),
B = γ(B′ + β × E′)− γ2(γ + 1)−1β(β ·B′). (2)

along with Er = γE′r′ , Bθ = γβE′r′ , r
′ = r, z′ = γz, and ρ′ = ρ/γ, where γ =

(1− β2)−1/2 is the relativistic factor, β = v/c and v is the beam velocity (assumed
to be along the z-axis). Thus, the radial Lorentz-Coulomb force in the lab frame is

Fself
r = q(Er + β ×Bθ) = qγ(1− β2)E′r′ = ρr/(2γ2ε0).

Newton’s equation of motion can be easily computed under the assumptions
β ∼ 1, γ ∼ γ0 and vθ(t = 0) = 0 (laminar flux) [6], i.e.,

r̈ + γ̇ṙ/γ = Fself
r /(γm0). (3)

where the dot denotes d/dt. Furthermore, assuming that the change in energy γ̇/γ
remains small, and letting s = ct, we can approximate
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FIGURE 1. Transverse motion of a single electron with zero initial divergence. The motion is
only due to space charge forces in the infinite beam limit.

γm0d
2r/ds2 � Fself

r /c2. (4)

Figure 1 shows the results of numerically solving Eq. (4), assuming a relatively
long electron bunch with an average energy of E0 = 20 MeV , a bunch radius
of ∆r0 = 4 µm, a bunch length of ∆z0 = 0.5 µm (the theory assumed an infinite
beam, but it is necessary to define a bunch length for the calculation of an equivalent
charge density), an angular spread of θ0 = 0 mrad, a total charge of Q = 1 pC and
a charge density ρ = Q/(π∆r20∆z0). Figure 1 is useful in that it shows the effects
of space charge that one expects in the limit of a very long beam.

It is insightful to compare these results to those that are obtained from a more
precise calculation that takes into consideration the finite duration of the bunch.
The next section will discuss the space charge model for an ultrashort bunch, under
the assumption of an ellipsoidal bunch shape. In this particular case one can
calculate the potential U and the electric field everywhere at the surface and inside
the ellipsoid. We will compare these two models and define the range where the
simple case of an infinite beam can still adequately describe the bunch evolution.

TRANSVERSE AND LONGITUDINAL
SPACE-CHARGE FORCES

The equations of motion that we use to model the effects of space charge on the
transverse and longitudinal motion of a single beam electron are given by

d2r

ds2
=

1

γ0m0v2
0

F self
r , (5)



d2σ

ds2
=

1

γ3
0m0v2

0

F self
s , (6)

where F self
r and F self

s are the effective space charge forces in the transverse and
longitudinal directions, respectively, s =

∫
dtvs + s0 is the longitudinal position of

the electron with velocity vs, s0 is a constant, σ = s − v0ts(s) is the longitudinal
distance between the electron and that of the synchronous particle located at the
bunch center ∆s = v0ts(s), v0 is the average velocity of the bunch (assumed to
be constant) and ts(s) =

∫
ds/vs. Here it is assumed that the electron is highly

relativistic, β � 1, with an energy near the average energy of the bunch, γ � γ0.
Next we outline the derivations of Eqs. (5) and (6).

Transverse motion

Equation (3) describes in cylindrical coordinates the motion of a single electron
of energy γm0c

2 and charge q = −e. Assuming vθ = 0 (laminar beam), γ̇/γ small
(γ � γ0, i.e., the electron energy is near the average energy of the bunch) and
γ⊥ � γ‖ � γ0, the transverse equation of motion is given by

r̈ =
Fself
r

γ0m0

.

Furthermore, for the transverse motion, it is adequate to approximate s � v0t+ s0.
Hence,

d2r

ds2
=

Fself
r

γ0m0v2
0

.

Longitudinal motion

We define ∆Es as the energy spread induced by the longitudinal space charge
force, i.e.,

∆Es =
∫
dsFself

s .

The energy spread of the electrons in the bunch is assumed small compared to the
average energy E0 = γ0mec

2 (γ0 � 1) of the bunch, i.e., |∆Es|/E0 � 1. The
variable η = ∆Es/E0 is then appropriate to describe the longitudinal dynamics of
the bunch [7], [8].

It is then straightforward to show that the spread in longitudinal momentum
∆ps due to the longitudinal space charge force is related to the variable η by

∆ps
p0

=
1

β0

√
(1 + η)2 − m0c2

E2
0

− 1 = f(η),



where β0 = v0/c and p0 = γ0β0m0c. Note that the derivatives of f(η) with respect
to η are given by

df(η)

dη
=

1

β0β
,
df(0)

dη
=

1

β2
0

,
d2f(0)

dη2
=

1

β4
0γ

2
0

.

We now define the longitudinal position variable σ = s−v0ts(s) and find its time
evolution by expanding f(η) = ∆ps/p0 about η = 0. Note that

dσ

ds
= 1− v0

dts
ds

= 1− v0

vs
= 1− β2

0

df(η)

dη
.

If η � 1, then df(η)/dη � df(0)/dη + ηd2f(0)/dη2. This implies dσ/ds � β−2
0 γ−2

0 η
and, hence,

d2σ

ds2
=

1

γ3
0m0v2

0

Fself
s ,

which is valid for relativistic bunches, γ0 � 1, with small energy spreads |η| =
|γ − γ0|/γ0 � 1.

ELLIPSOIDAL BEAM THEORY

We next calculate the electrostatic potential of the bunch in 3D by making a
summation over all the charges inside the bunch. The model described below
closely follows references [7]- [9]. The 3D bunch is described as an ellipsoid that
maintains its ellipsoidal shape as it evolves. In the lab frame, the longitudinal
bunch size is defined as σs along the longitudinal coordinate σ, and the transverse
bunch sizes as σx and σy along the transverse coordinates x and y. In the frame
moving with the bunch, the bunch boundary is assumed to be an ellipse given by

x′2

σ2
x

+
y′2

σ2
y

+
σ′2

γ2
0σ

2
s

= 1. (7)

Furthermore, within this ellipse, the charge density of the bunch is assumed to be
uniform.

In the interior of the ellipse, the electrostatic potential in the bunch frame (de-
noted by a prime) is a quadratic function of x′, y′ and σ′,

U ′ = −Ax′2 −By′2 − Cσ′2 +D,

where A, B, C, and D are constants. The electric field in the bunch frame is
E′ = −∇U′. Integrating over the ellipsoid volume, and using the expression of the
total charge Q = (4π/3)σxσyσsρ, gives

E ′x =
3

8πε0
QI1x

′ (A =
3

16πε0
QI1),



E ′y =
3

8πε0
QI2y

′ (B =
3

16πε0
QI2),

E ′s =
3

8πε0
QI3σ

′ (C =
3

16πε0
QI3),

where I1, I2 and I3 are the elliptical integrals given by

I1 =
∫ ∞
0

dτ

(σ2
x + τ)

√
φ(τ)

,

I2 =
∫ ∞
0

dτ

(σ2
y + τ)

√
φ(τ)

,

I3 =
∫ ∞
0

dτ

(γ2
0σ

2
s + τ)

√
φ(τ)

,

with φ(τ) = (σ2
x + τ)(σ2

y + τ)(γ2
0σ

2
s + τ).

The fields in the lab frame are given by Eq. (2), along with Ex = γ0E
′
x, Ey =

γ0E
′
y, Es = E ′s, Bx = β0γ0E

′
y, By = −β0γ0E

′
x, Bs = 0 (we assumed B′ ∼ 0, i.e.,

the relative motion between the electrons inside the bunch is almost zero), r′ = r,
y′ = y and σ′ = γ0σ.

We extract the Lorentz-Coulomb force Fself = q(E + v ×B/c) from the fields,

Fx =
3

8πε0

eQ

γ0

x
∫ ∞
0

dτ

(σ2
x + τ)

√
(σ2

x + τ)(σ2
z + τ)(γ2

0σ
2
s + τ)

,

Fy =
3

8πε0

eQ

γ0

y
∫ ∞
0

dτ

(σ2
z + τ)

√
(σ2

x + τ)(σ2
z + τ)(γ2

0σ
2
s + τ)

,

Fs =
3

8πε0
eQγ0σ

∫ ∞
0

dτ

(γ2
0σ

2
s + τ)

√
(σ2

x + τ)(σ2
z + τ)(γ2

0σ
2
s + τ)

.

Assuming that the beam has a cylindrical symmetry, i.e., σr ≡ σx = σy, the forces
are then given by,

Fr =
3

8πε0

eQ

γ0

rIr, Fs =
3

8πε0
eQγ0σIs

where

Ir =
∫ ∞
0
dτ(a+ τ)−2(b+ τ)−1/2,

Is =
∫ ∞
0
dτ(a+ τ)−1(b+ τ)−3/2,

with a = σ2
r and b = γ2

0σ
2
s . The integrals Ir and Is can be calculated analytically,

Ir =




π

2(a− b)3/2
− b1/2

a(a− b) − (a− b)−3/2 tan−1[b1/2(a− b)−1/2], for a > b,

b1/2

a(b− a) +
1

2
(b− a)−3/2 ln[(

√
b−
√
b− a)/(

√
b+
√
b− a)], for a < b,



Is =



− π

(a− b)3/2
+

2

b1/2(a− b) + 2(a− b)−3/2 tan−1[b1/2(a− b)−1/2], for a > b,

− 2

b1/2(b− a) − (b− a)−3/2 ln[(
√
b−
√
b− a)/(

√
b+
√
b− a)], for a < b,

and Ir = Is = (2/3)a−3/2 for a = b.
In the limit a � b (i.e σr � γ0σs), the above expressions can be expanded to

yield

Ir =
1

b1/2a
+ b−3/2[1 + (1/2) ln(4b/a)][1 +O(a/b)],

Is = b−3/2[2 + ln(4b/a)][1 +O(a/b)].

Notice that Is/Ir ∼ O(a/b). Hence, to leading order in a/b, Ir ∼ 1/(γ0σsσ
2
r)

and Is ∼ 0 and we recover the forces on an infinite and cylindrical beam, i.e.,
Fr = eρr/(2γ2

0ε0) and Fs ∼ 0, where the volume of the ellipsoid is Vell = 3/(4πσ2
rσs).

ENVELOPE EQUATIONS

Space charge dominated

The trajectory of any particle within the bunch can be solved if the bunch radius
and length (boundaries of the ellipse), σr and σs, are know as a function of propa-
gation distance. Now under the condition of a space charge dominated beam, the
forces on a particle scale as Fr ∼ r and Fs ∼ s. Specifically, a particle at a larger
radius will remain at a larger radius compaered to a particle at a smaller radius.
We will estimate the evolution of the beam envelope by replacing r with σr and σ
with σs in Eqs. (5) and (6), i.e.,

σ′′r =
Kr(σr, σs)

σr
, σ′′s =

Ks(σr, σs)

σs
, (8)

Kr =
3

8πε0

eQ

γ0

Ir(σr, σs), Ks =
3

8πε0
eQγ0Is(σr, σs),

where the contribution of finite emittance to the envelope equations has been ne-
glected.

Emittance dominated

It is interesting to compare the space charge dominated regime to the emittance
dominated regime. In free space, neglecting space charge forces, the envelope equa-
tions for the electron bunch length and radius are given by

σ′′r −
ε2r
σ3
r

= 0, σ′′s −
ε2s
σ3
s

= 0, (9)



where εr and εs are the rms unnormalized emittances in the transverse and longi-
tudinal direction, which are given by [10]

εs = (σ0
s/γ

2
0)∆ps/p0, εr = (〈r2〉〈r′2〉 − 〈rr′〉2)1/2,

where σ0
s is the initial bunch length, ∆ps(η)/p0 is the longitudinal momentum

spread, and the angular brackets denote an averaging over the particle distribution.
The usual definitions for the normalized emittances are given by

εr,n = γ0β0εr, εs,n = γ3
0β0εs

Equation (9) can be readily integrated to yield

σ2
r(s) = (σ0

r)
2 + 2σ0

rσ
′0
r s+ [(εr/σ

0
r)

2 + (σ
′0
r )2]s2,

σ2
s(s) = (σ0

s)
2 + 2σ0

sσ
′0
s s+ [(εs/σ

0
s)

2 + (σ
′0
s )2]s2,

where the initial conditions σ(0) = σ0 and σ′(0) = σ
′0 have been assumed.

NUMERICAL SOLUTIONS AND COMPARISONS

Studies of ultrashort bunches

Next we will consider two cases: (i) electron bunches with low ∆E/E0 such as
we expect to produce with colliding pulse LWFA injectors [2] - [4], and (ii) electron
beams with 100% ∆E/E0 such as produced with self-modulated laser wakefield
accelerators (SM-LWFA) [11] - [15].

Beam envelope growth in the colliding pulse LWFA regime

Typical bunch characteristics expected from a colliding pulse injector [2] - [4] are
a total charge Q ∼ 1 pC, a low energy spread (η ∼ 1%), a transverse size of the
order of the laser spot size (σr ∼ 5 µm) and an ultrashort bunch duration (∆τ ∼ 1
fs, i.e., σs ∼ 0.1−1 µm). Figures 2, 4 and 3 plot the bunch radius σr(s) and length
σs(s) for the space charge dominated regime, Eq. (8), as a function of propagation
distance and charge (at s = 50 mm) assuming several electron bunch energies
E0 = 20 - 40 MeV , an initial bunch radius σ0

r = 4 µm, an initial bunch length
σ0
s = 0.5 µm, an initial divergence σ

′0
r = σ

′0
s = 0 (initially at the beam focus), and a

total amount of charge from 1 to 100 pC. For comparison, we also plot results from
the emittance dominated regime, Eq. (9), for a normalized transverse emittance
of εr,n = 0.1, 0.5 and 1.0 mm-mrad, and a normalized longitudinal emittance of
εs,n = 6 × 10−5 mm-mrad and εs,n = 6 × 10−4 mm-mrad, which corresponds to
an energy spread η of 1% and 10%. These figures clearly show that a fairly high
energy electron bunch (∼ 20 MeV ) with a total amount of charge of several pC



40MeV -no space charge- (d)
20MeV - no space charge- (c)

40MeV (b)
20MeV (a)

(d)

(c)
(b)

(a)

�r;n = 0:1 mm:mrad

s(mm)

�r(�m)

80706050403020100

200

150

100

50

0

FIGURE 2. Transverse beam size versus propagation distance with space charge (Q = 1 pc)
for a (a) 20 and (b) 40 MeV bunch. Curves (c) and (d) are for no space charge and normalized
emittances of 0.1 mm-mrad

produced by colliding pulse injection can rapidly blow-up via space charge due to
its very compact size if εr,n ∼ 0.1 mm-mrad. Below 30 pC per bunch the beam is
emittance dominated when its value is of the order of εr,n = 1 mm-mrad, which is a
typical value obtained from numerical simulations, i.e., in this case one can neglect
the effect of space charge. Above this value space charge must be considered and
clearly participates in the beam growth. Around 50 pC both phenomenon must be

aQ
1=2 + bQ + c

p = 40MeV

�r;n = 0:5 mm:mrad

�r;n = 1 mm:mrad

Q(nC)

�r(�m)

0.10.080.060.040.020

400

350

300

250

200

150

100

50

0

FIGURE 3. Transverse beam size (at s = 50 mm) versus charge with space charge for a 40
MeV bunch. The horizontal lines are for no space charge and normalized emittance of 0.5 and 1
mm-mrad.
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FIGURE 4. Longitudinal beam size (at s = 50 mm) versus charge with space charge for a 40
MeV bunch. The horizontal lines are for no space charge and normalized longitudinal emittance
of 6× 10−5 and 6× 10−4 mm-mrad.

simultaneously studied and Eqs. (8) and (9) cannot be decoupled for the transverse
motion, i.e., the coupled envelope equation is,

σ′′r =
Kr(σr, σs)

σr
+
ε2r(σr, σs)

σ3
r

.

Conversely, one can consider that above a charge of 50 pC per bunch the beam is
space charge dominated.

On the other hand from Fig. 4, one can see that the longitudinal motion for a
5 pC bunch is already in a space charge dominated regime if we assume an initial
energy spread of η = 1%. The longitudinal normalized emittance in this case is
εs,n = 6× 10−5 mm-mrad.

Beam envelope growth in the SM-LWFA regime

In the SM-LWFA regime, the electron energy distribution is assumed to be similar
to that observed experimentally [11] - [15], as shown in Fig.5, with a total charge
per bunch on the order of 1 nC. To simulate the bunch size evolution, the method
we use is to take the number of electrons, Ni, present in a small energy bin about
the energy Ei, and to calculate the beam sizes σri,si for this group of electrons using
Eq. (8) under the influence of the total bunch charge.

The overall bunch sizes σr,s are estimated by summing the contribution of each
group of electrons to the overall bunch profile, under the assumption that the
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FIGURE 5. Momentum distribution model for an electron bunch produced by a SM-LWFA.

profiles for each group, as well as the overall profile, is flattop, i.e.,

〈σ2
r〉 =

n∑
i=0

Niσ
2
ri/

n∑
i=0

Ni, 〈σ2
s〉 =

n∑
i=0

Niσ
2
si/

n∑
i=0

Ni. (10)

Using this model, it is found that the beam spot size blows-up rapidly due to
the large amount of low energy electrons (energy spread per bunch η is close to
100%), which are more sensitive to space charge forces. Figure 6 shows the beam
radius versus charge after s = 50 mm from the numerical solution of Eqs. (8) and
(10), assuming σ0

r = 5 µm, σ0
s = 10 µm, σ

′0
s = σ

′0
r = 0, and neglecting the effect of

(b)
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FIGURE 6. Transverse beam size (at s = 50 mm) as a function charge Q for a SM-LWFA
bunch. The horizontal lines are for no space charge and unnormalized transverse emittances of
0.1 and 1 mm-mrad.
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FIGURE 7. Beam divergence (at s = 50 mm) as a function of charge Q for a SM-LWFA bunch.
Points are from a numerical calculation and the curve represents a fit of the form aQ1/2 + bQ+ c,
where a, b and c are constants.

emittance. For comparison with the emittance dominated regime, the solution of
Eq. (9) is shown for an unnormalized transverse rms emittance εr = 1.0 mm-mrad
and εr = 0.1 mm-mrad.

One can also study the average beam divergence 〈σ′2r 〉1/2 and 〈σ′2s 〉1/2, where

〈σ′2r 〉 =
n∑
i=0

Niσ
′2
ri/

n∑
i=0

Ni, 〈σ
′2
s 〉 =

n∑
i=0

Niσ
′2
si/

n∑
i=0

Ni.

Figure 7 shows the transverse beam divergence as a function of charge for the
parameters of Fig. 6. The divergence 〈σ′2r 〉1/2 is clearly dependent of the beam
characteristics (σ0

r , σ
0
s , Q, γ0), but for fixed sizes 〈σ′2r 〉1/2 is in good agreement with

a fit of the form aQ1/2 + bQ+ c, where a, b and c are constants, which can be used
as an empirical scaling law.

CONCLUSION

Plasma-based accelerators offer the possibility of providing compact, high energy
electron accelerators and are also capable of producing ultrashort electron bunches
in which the longitudinal size is much smaller than the transverse size. Space
charge effects are not of concern while the bunch is in the plasma wave, since
the longitudinal and transverse fields of the wake are typically much greater than
the space charge forces of the bunch, but space charge cannot be neglected when
an electron bunch propagates in vacuum with no external fields, because of its
very compact dimensions. The evolution of the bunch sizes under the influence
of space charge has been considered with the assumptions that the beam shape



remains ellipsoidal, and the charge density within the bunch is uniform. Space
charge effects on bunches produced in the SM-LWFA and colliding pulse scheme
have been examined computationally. Transverse and longitudinal beam growth
and the normalized emittance growth depend strongly on energy, but even a fairly
high energy electron bunch ∼ 40 MeV can still be space charge dependent if it
contains a high charge density.

The above analysis and simulations assumed that within the ellipsoidal bunch,
the charge density was uniform. It is possible to perform a similar analysis that as-
sumes the charge density is Gaussian, although this formulation is somewhat more
difficult numerically. Previous studies [16] have found that the uniform charge
model tends to under estimate the effects of space charge compared to the Gaus-
sian charge distribution model, since a Gaussian distribution gives a higher charge
density near the bunch center. Hence, the results presented in this paper present
an lower bound on the effects of space charge on ultrashort bunches.
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