8 research outputs found

    Bacterial communities and antibiotic resistance in human-impacted water environments

    Get PDF
    From a One-Health concept the health of humans, animals and the environment is interconnected and what happens to one of the domains will affect the other two simultaneously. This concept can be applied not only to the transmission of bacterial infectious diseases but also to the transmission of antibiotic resistance. While bacterial infectious diseases caused by water-borne pathogens are still a leading cause of morbidity and mortality worldwide, the development and spread of antibiotic resistant bacteria is threatening human health like never before. If we are not able to control the generation and spread of antibiotic resistant bacteria, in the near future thousands of people will die of infections that were treatable before. The relationship between human and animal health has been widely studied before but the environment is usually set aside minimizing the impact and effect of contaminated environments on human and animal health. Contaminated water environments represent a suitable place for the accumulation, spread and transmission of pathogenic and antibiotic resistant bacteria. In that sense, water environments are good interfaces where the transfer of antibiotic resistance determinants between bacteria might occur. Hence water environments might represent a good place for the surveillance of pathogenic bacteria and antibiotic resistance. In this thesis we aimed to characterize pathogenic and non-pathogenic bacterial communities as well as antibiotic resistant bacteria and antibiotic resistance genes in highly contaminated rivers in La Paz and Oruro in Bolivia as well as in a waster water pump at a suburban community in Oslo. We also aimed to evaluate the potential of bacterial communities from contaminated water environments to transfer antibiotic resistance determinants to E. coli and test the effect of heavy metals in the occurrence and transfer of antibiotic resistance. We found high prevalence of enterobacteria, pathogenic E. coli and other diarrheal bacteria in water, agricultural soil and vegetables from an urban-impacted basin in La Paz, Bolivia (Paper I). Moreover, we repeatedly found the globally distributed and multi-drug resistant E. coli sequence types ST131 in Norway and ST648 both in Bolivia and Norway showing the important role of the environment for the dispersion of pathogenic and antibiotic resistant bacteria (Paper I and II). Additionally, we proved a high capability of bacterial communities from contaminated water environments to transfer antibiotic resistance determinants to E. coli. We showed that presence of metals such as ZnSO4 and CuSO4 in conjugation experiments might favor the transfer/acquisition of more diverse phenotypic multi-drug resistance profiles and mobile genetic elements carrying higher diversity of genes including extended spectrum beta-lactamases and other relevant genes conferring important advantages to the bacterial host (Paper III). Bacterial donors from contaminated irrigation water transferred a high diversity of antibiotic resistance determinants at considerable levels showing the potential risk of transmission of antibiotic resistance to human populations by contaminated irrigation water and vegetables (Paper III). We did not find significant associations between metal composition, bacterial communities and the abundance of selected antibiotic resistance determinants in acid mine drainage contaminated watersheds in Oruro, Bolivia (Paper IV)

    Molecular analyses of fecal bacteria and hydrodynamic modeling for microbial risk assessment of a drinking water source

    Get PDF
    Safe water is a global concern, and methods to accurately monitor quality of water are vital. To assess the risks related to bacterial pathogen load in Lake Vomb that provides drinking water to the southern part of Sweden, this study combined molecular analyses of enterobacteria and bacterial pathogens in water using quantitiative real-time PCR with hydrodynamic modeling and quantitative microbial risk assessment (QMRA). A real-time PCR assay to detect enterobacteria was set up by primers targeting ssrA. Between February 2015 and May 2016, presence of ssrA gene copies as well as Campylobacter spp., Salmonella spp., and EHEC O157 DNA was analyzed by real-time PCR at several locations in the catchment of Lake Vomb and its tributaries Bjorkaan, Borstbacken, and Torpsbacken. Bjorkaan had the highest detected concentrations of the ssrA gene and, according to the results of hydrodynamic modeling, contributed most to the contamination of the water intake in the lake. None of the water samples were positive for genes encoding EHEC O157 and Campylobacter spp., while invA (Salmonella spp.) was present in 11 samples. The QMRA showed that the suggested acceptable risk level (daily probability of infection <2.7 x 10-7) is achieved with a 95% probability, if the Salmonella concentrations in the water intake are below 101 bacteria/100 mL. If a UV-disinfection step is installed, the Salmonella concentration at the water intake should not exceed 106 bacteria/100 mL

    Pharmaceutical pollution of the world's rivers

    Get PDF
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals

    Molecular Analyses of Fecal Bacteria and Hydrodynamic Modeling for Microbial Risk Assessment of a Drinking Water Source

    No full text
    Safe water is a global concern, and methods to accurately monitor quality of water are vital. To assess the risks related to bacterial pathogen load in Lake Vomb that provides drinking water to the southern part of Sweden, this study combined molecular analyses of enterobacteria and bacterial pathogens in water using quantitiative real-time PCR with hydrodynamic modeling and quantitative microbial risk assessment (QMRA). A real-time PCR assay to detect enterobacteria was set up by primers targeting ssrA. Between February 2015 and May 2016, presence of ssrA gene copies as well as Campylobacter spp., Salmonella spp., and EHEC O157 DNA was analyzed by real-time PCR at several locations in the catchment of Lake Vomb and its tributaries Björkaån, Borstbäcken, and Torpsbäcken. Björkaån had the highest detected concentrations of the ssrA gene and, according to the results of hydrodynamic modeling, contributed most to the contamination of the water intake in the lake. None of the water samples were positive for genes encoding EHEC O157 and Campylobacter spp., while invA (Salmonella spp.) was present in 11 samples. The QMRA showed that the suggested acceptable risk level (daily probability of infection <2.7 × 10−7) is achieved with a 95% probability, if the Salmonella concentrations in the water intake are below 101 bacteria/100 mL. If a UV-disinfection step is installed, the Salmonella concentration at the water intake should not exceed 106 bacteria/100 mL

    Diarrheal bacterial pathogens and multi-resistant enterobacteria in the Choqueyapu River in La Paz, Bolivia.

    No full text
    Water borne diarrheal pathogens might accumulate in river water and cause contamination of drinking and irrigation water. The La Paz River basin, including the Choqueyapu River, flows through La Paz city in Bolivia where it is receiving sewage, and residues from inhabitants, hospitals, and industry. Using quantitative real-time PCR (qPCR), we determined the quantity and occurrence of diarrheagenic Escherichia coli (DEC), Salmonella enterica, Klebsiella pneumoniae, Shigella spp. and total enterobacteria in river water, downstream agricultural soil, and irrigated crops, during one year of sampling. The most abundant and frequently detected genes were gapA and eltB, indicating presence of enterobacteria and enterotoxigenic E. coli (ETEC) carrying the heat labile toxin, respectively. Pathogen levels in the samples were significantly positively associated with high water conductivity and low water temperature. In addition, a set of bacterial isolates from water, soil and crops were analyzed by PCR for presence of the genes blaCTX-M, blaKPC, blaNDM, blaVIM and blaOXA-48. Four isolates were found to be positive for blaCTX-M genes and whole genome sequencing identified them as E. coli and one Enterobacter cloacae. The E. coli isolates belonged to the emerging, globally disseminated, multi-resistant E. coli lineages ST648, ST410 and ST162. The results indicate not only a high potential risk of transmission of diarrheal diseases by the consumption of contaminated water and vegetables but also the possibility of antibiotic resistance transfer from the environment to the community

    Pharmaceutical pollution of the world's rivers

    No full text
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.N

    Pharmaceutical pollution of the world's rivers

    No full text
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals
    corecore