2,849 research outputs found

    100 GHz Multiple Colliding Pulse Generation From Cleaved Facet-Free Multi-Section Semiconductor Laser Diode

    Get PDF
    We present a monolithically integrated mode-locked laser (MLL) with 25 GHz fundamental repetition rate frequency, which has been designed to operate in a fourth-order colliding regime, to generate 100 GHz. This device has been fabricated within a multi-project wafer (MPW) run in an InP-based active-passive generic foundry. The Fabry-Perot laser resonator, of around 1.66 mm length, is defined by two on-chip reflectors, eliminating the need of cleaved facet. Three saturable absorber sections are symmetrically located by spacing them a quarter of this total length, dividing the cavity into four gain segments. We show that this structure can generate an electrical beat note at 25 GHz as well as 100 GHz, with a linewidth of 350 kHz and 150 kHz, respectively, operating in passive operation regime

    Intercellular Trafficking of Gold Nanostars in Uveal Melanoma Cells for Plasmonic Photothermal Therapy

    Get PDF
    Efficient plasmonic photothermal therapies (PPTTs) using non-harmful pulse laser irradiation at the near-infrared (NIR) are a highly sought goal in nanomedicine. These therapies rely on the use of plasmonic nanostructures to kill cancer cells while minimizing the applied laser power density. Cancer cells have an unsettled capacity to uptake, retain, release, and re-uptake gold nanoparticles, thus offering enormous versatility for research. In this work, we have studied such cell capabilities for nanoparticle trafficking and its impact on the effect of photothermal treatments. As our model system, we chose uveal (eye) melanoma cells, since laser-assisted eye surgery is routinely used to treat glaucoma and cataracts, or vision correction in refractive surgery. As nanostructure, we selected gold nanostars (Au NSs) due to their high photothermal efficiency at the near-infrared (NIR) region of the electromagnetic spectrum. We first investigated the photothermal effect on the basis of the dilution of Au NSs induced by cell division. Using this approach, we obtained high PPTT efficiency after several cell division cycles at an initial low Au NS concentration (pM regime). Subsequently, we evaluated the photothermal effect on account of cell division upon mixing Au NS-loaded and non-loaded cells. Upon such mixing, we observed trafficking of Au NSs between loaded and non-loaded cells, thus achieving effective PPTT after several division cycles under low irradiation conditions (below the maximum permissible exposure threshold of skin). Our study reveals the ability of uveal melanoma cells to release and re-uptake Au NSs that maintain their plasmonic photothermal properties throughout several cell division cycles and re-uptake. This approach may be readily extrapolated to real tissue and even to treat in situ the eye tumor itself. We believe that our method can potentially be used as co-therapy to disperse plasmonic gold nanostructures across affected tissues, thus increasing the effectiveness of classic PPTT

    Development of a Novel Ex-vivo 3D Model to Screen Amoebicidal Activity on Infected Tissue

    Get PDF
    Amoebiasis is a parasitic disease that causes thousands of deaths every year, its adverse effects and resistance to conventional treatments have led to the search of new treatment options, as well as the development of novel screening methods. In this work, we implemented a 3D model of intestine and liver slices from hamsters that were infected ex vivo with virulent E. histolytica trophozoites. Results show preserved histology in both uninfected tissues as well as ulcerations, destruction of the epithelial cells, and inflammatory reaction in intestine slices and formation of micro abscesses, and the presence of amoebae in the sinusoidal spaces and in the interior of central veins in liver slices. The three chemically synthetized compounds T-001, T-011, and T-016, which act as amoebicides in vitro, were active in both infected tissues, as they decreased the number of trophozoites, and provoked death by disintegration of the amoeba, similar to metronidazole. However, compound T-011 induced signs of cytotoxicity to liver slices. Our results suggest that ex vivo cultures of precision-cut intestinal and liver slices represent a reliable 3D approach to evaluate novel amoebicidal compounds, and to simultaneously detect their toxicity, while reducing the number of experimental animals commonly required by other model systems

    A 5LCHB Inverter for PV transformerless applications with reduced leakage ground current

    Get PDF
    Transformerless inverters for photovoltaic systems are widely used as it features low cost, volume, and weight. Thus, in recent years, its study has been of great interest to the research community. In this paper a transformerless cascade multilevel inverter for photovoltaic applications with leakage ground current compensation capability is presented. The proposed solution involves a second-order LC output filter with a particular connection, which is referred to as the DC-link-tied LC output filter. This solution is aimed to deal with the leakage-ground current issue, regardless of the considered PWM strategy. The mathematical model of the system involving such a particular LC output passive filter configuration is presented, out of which, both the differential-mode and the common-mode models are obtained. These models are used to explain the leakage-ground current improvement of the proposed DC-link-tied LC output filter. This hardware solution is evaluated under different modulation schemes to contrast the converter output response and the leakage-ground current performance. Finally, simulation and experimental results are performed using a 1 kW academic prototype to assess the performance of the proposed DC-link-tied LC output filter used in a transformerless inverter application.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats SosteniblesPostprint (published version

    Does inter-vertebral range of motion increase after spinal manipulation? A prospective cohort study.

    Get PDF
    Background: Spinal manipulation for nonspecific neck pain is thought to work in part by improving inter-vertebral range of motion (IV-RoM), but it is difficult to measure this or determine whether it is related to clinical outcomes. Objectives: This study undertook to determine whether cervical spine flexion and extension IV-RoM increases after a course of spinal manipulation, to explore relationships between any IV-RoM increases and clinical outcomes and to compare palpation with objective measurement in the detection of hypo-mobile segments. Method: Thirty patients with nonspecific neck pain and 30 healthy controls matched for age and gender received quantitative fluoroscopy (QF) screenings to measure flexion and extension IV-RoM (C1-C6) at baseline and 4-week follow-up between September 2012-13. Patients received up to 12 neck manipulations and completed NRS, NDI and Euroqol 5D-5L at baseline, plus PGIC and satisfaction questionnaires at follow-up. IV-RoM accuracy, repeatability and hypo-mobility cut-offs were determined. Minimal detectable changes (MDC) over 4 weeks were calculated from controls. Patients and control IV-RoMs were compared at baseline as well as changes in patients over 4 weeks. Correlations between outcomes and the number of manipulations received and the agreement (Kappa) between palpated and QF-detected of hypo-mobile segments were calculated. Results: QF had high accuracy (worst RMS error 0.5o) and repeatability (highest SEM 1.1o, lowest ICC 0.90) for IV-RoM measurement. Hypo-mobility cut offs ranged from 0.8o to 3.5o. No outcome was significantly correlated with increased IV-RoM above MDC and there was no significant difference between the number of hypo-mobile segments in patients and controls at baseline or significant increases in IV-RoMs in patients. However, there was a modest and significant correlation between the number of manipulations received and the number of levels and directions whose IV-RoM increased beyond MDC (Rho=0.39, p=0.043). There was also no agreement between palpation and QF in identifying hypo-mobile segments (Kappa 0.04-0.06). Conclusions: This study found no differences in cervical sagittal IV-RoM between patients with non-specific neck pain and matched controls. There was a modest dose-response relationship between the number of manipulations given and number of levels increasing IV-RoM - providing evidence that neck manipulation has a mechanical effect at segmental levels. However, patient-reported outcomes were not related to this

    The role of cognitive dysfunction in the symptoms and remission from depression.

    Get PDF
    The disability and burden associated with major depression comes only in part from its affective symptoms; cognitive dysfunctions associated with depression also play a crucial role. Furthermore, these cognitive impairments during depression are manifold and multilevel affecting elementary and more complex cognitive processes equally. Several models from different directions tried to evaluate, conceptualize and understand the depth and magnitude of cognitive dysfunctions in depression and their bidirectional interactions with other types of depressive symptomatology including mood symptoms. In the current review, we briefly overview different types of cognitive symptoms and deficits related to major depression including hot and cold as well as trait- and state-like cognitive alterations and we also describe current knowledge related to the impact of cognitive impairments on the course and outcomes of depression including remission, residual symptoms, function, and response to treatment. We also emphasize shortcomings of currently available treatments for depression in sufficiently improving cognitive dysfunctions and point out the need for newer pharmacological approaches especially in cooperation with psychotherapeutic interventions

    Analysis of results of effective dose estimation obtained from RADAR 2017 dose assessment model for nuclear medicine procedures

    Get PDF
    EP-296 Aim/Introduction: To analyze the results of effective dose (E) estimation of the most frequent procedures using photon emitters in Nuclear Medicine, obtained from RADAR 2017 dose assessment model. To compare these results with those obtained from ICRP 128 (2015) recommendations, and to assess how using each dose assessment model can change E results. Materials and Methods: E estimation data was collected from photon emitter procedures performed during the last year in our department, obtained from RADAR 2017 dose estimation model for age groups: = 1 year old; >1-5 years old ; >5- 10 years old, >10- 15 years old and adults. Injected activity was the one recommended by international guidelines and EANM Pediatric and Dosimetry Committees. Hybrid exams (SPECT / CT) and procedures for which there is no RADAR 2017 dosimetry estimation were excluded. Results for (E) were compared with those obtained by using ICRP 128 (2015) recommendations. Results: With RADAR 2017 dose evaluation model we obtained a lower mean value of E on most of the procedures that were analyzed, being significantly lower for Renogram, Renal scintigraphy on >10-15 years old, Thyroid scintigraphy, Meckel’s scan and Bone Scan (0.12 to 1.16 mSv, 25% to 67%). Brain perfusion and Renal scintigraphy on ages under 10 obtained a significantly greater difference for E (0.33 to 2.85 mSv, 26% to 29%). Conclusion: These results are an updated collection of estimated E values for photon-emitting radiopharmaceuticals commonly used in Nuclear Medicine, considering RADAR 2017 dose assessment model compared to ICRP 128) recommendations. Methodological changes on estimation lead to lower E for most of diagnostic procedures using photon emitters, this is of special interest for patients undergoing repeated ionizing radiation (dosimetry history)
    • …
    corecore