8,295 research outputs found

    Dependence of the Fundamental Plane Scatter on Galaxy Age

    Get PDF
    The fundamental plane (FP) has an intrinsic scatter that can not be explained purely by observational errors. Using recently available age estimates for nearby early type galaxies, we show that a galaxy's position relative to the FP depends on its age. In particular, the mean FP corresponds to ellipticals with an age of ~10 Gyr. Younger galaxies are systematically brighter with higher surface brightness relative to the mean relation. Old ellipticals form an `upper envelope' to the FP. For our sample of mostly non-cluster galaxies, age can account for almost half of the scatter in the B band FP. Distance determinations based on the FP may have a systematic bias, if the mean age of the sample varies with redshift. We also show that fundamental plane residuals, B-V colors and Mg_2 line strength are consistent with an ageing central burst superposed on an old stellar population. This reinforces the view that these age estimates are tracing the last major episode of star formation induced by a gaseous merger event. We briefly discuss the empirical `evolutionary tracks' of merger-remnants and young ellipticals in terms of their key observational parameters.Comment: 14 pages, Latex, 2 figures, accepted by ApJ Letter

    Properties of the predicted super-deformed band in ^{32}S

    Full text link
    Properties like the excitation energy with respect to the ground state, moments of inertia, B(E2) transition probabilities and stability against quadrupole fluctuations at low spin of the predicted superdeformed band of ^{32}S are studied with the Gogny force D1S using the angular momentum projected generator coordinate method for the axially symmetric quadrupole moment. The Self Consistent Cranking method is also used to describe the superdeformed rotational band. In addition, properties of some collective normal deformed states are discussed.Comment: 7 pages, 3 figure

    Shape evolution and shape coexistence in Pt isotopes: comparing interacting boson model configuration mixing and Gogny mean-field energy surfaces

    Get PDF
    The evolution of the total energy surface and the nuclear shape in the isotopic chain 172−194^{172-194}Pt are studied in the framework of the interacting boson model, including configuration mixing. The results are compared with a self-consistent Hartree-Fock-Bogoliubov calculation using the Gogny-D1S interaction and a good agreement between both approaches shows up. The evolution of the deformation parameters points towards the presence of two different coexisting configurations in the region 176 ≤\leq A ≤\leq 186.Comment: Submitted to PR

    Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate

    Full text link
    Helical spin textures in a 87^{87}Rb F=1 spinor Bose-Einstein condensate are found to decay spontaneously toward a spatially modulated structure of spin domains. This evolution is ascribed to magnetic dipolar interactions that energetically favor the short-wavelength domains over the long-wavelength spin helix. This is confirmed by eliminating the dipolar interactions by a sequence of rf pulses and observing a suppression of the formation of the short-range domains. This study confirms the significance of magnetic dipole interactions in degenerate 87^{87}Rb F=1 spinor gases

    The Evolution of Luminous Compact Blue Galaxies: Disks or Spheroids?

    Get PDF
    Luminous compact blue galaxies (LCBGs) are a diverse class of galaxies characterized by high luminosities, blue colors, and high surface brightnesses. Residing at the high luminosity, high mass end of the blue sequence, LCBGs sit at the critical juncture of galaxies that are evolving from the blue to the red sequence. Yet we do not understand what drives the evolution of LCBGs, nor how they will evolve. Based on single-dish HI observations, we know that they have a diverse range of properties. LCBGs are HI-rich with M(HI)=10^{9-10.5} M(sun), have moderate M(dyn)=10^{10-12} M(sun), and 80% have gas depletion timescales less than 3 Gyr. These properties are consistent with LCBGs evolving into low-mass spirals or high mass dwarf ellipticals or dwarf irregulars. However, LCBGs do not follow the Tully-Fisher relation, nor can most evolve onto it, implying that many LCBGs are not smoothly rotating, virialized systems. GMRT and VLA HI maps confirm this conclusion revealing signatures of recent interactions and dynamically hot components in some local LCBGs, consistent with the formation of a thick disk or spheroid. Such signatures and the high incidence of close companions around LCBGs suggest that star formation in local LCBGs is likely triggered by interactions. The dynamical masses and apparent spheroid formation in LCBGs combined with previous results from optical spectroscopy are consistent with virial heating being the primary mechanism for quenching star formation in these galaxies.Comment: 4 pages, 1 figure, to appear in "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista & C.C. Popescu, AIP Conf. Se

    Amplification of Fluctuations in a Spinor Bose Einstein Condensate

    Full text link
    Dynamical instabilities due to spin-mixing collisions in a 87^{87}Rb F=1 spinor Bose-Einstein condensate are used as an amplifier of quantum spin fluctuations. We demonstrate the spectrum of this amplifier to be tunable, in quantitative agreement with mean-field calculations. We quantify the microscopic spin fluctuations of the initially paramagnetic condensate by applying this amplifier and measuring the resulting macroscopic magnetization. The magnitude of these fluctuations is consistent with predictions of a beyond-mean-field theory. The spinor-condensate-based spin amplifier is thus shown to be nearly quantum-limited at a gain as high as 30 dB

    The Universality of the Fundamental Plane of E and S0 Galaxies. Spectroscopic data

    Full text link
    We present here central velocity dispersion measurements for 325 early-type galaxies in eight clusters and groups of galaxies, including new observations for 212 galaxies. The clusters and groups are the A262, A1367, Coma (A1656), A2634, Cancer and Pegasus clusters, and the NGC 383 and NGC 507 groups. The new measurements were derived from medium dispersion spectra, that cover 600 A centered on the Mg Ib triplet at lambda ~ 5175. Velocity dispersions were measured using the Tonry & Davis cross-correlation method, with a typical accuracy of 6%. A detailed comparison with other data sources is made.Comment: 12 pages, 5 tables, 3 figures, to appear in AJ. Note that tables 2 and 3 are in separate files, as they should be printed in landscape forma
    • …
    corecore