2,474 research outputs found

    Evidence for self-interaction of charge distribution in charge-coupled devices

    Full text link
    Charge-coupled devices (CCDs) are widely used in astronomy to carry out a variety of measurements, such as for flux or shape of astrophysical objects. The data reduction procedures almost always assume that ther esponse of a given pixel to illumination is independent of the content of the neighboring pixels. We show evidence that this simple picture is not exact for several CCD sensors. Namely, we provide evidence that localized distributions of charges (resulting from star illumination or laboratory luminous spots) tend to broaden linearly with increasing brightness by up to a few percent over the whole dynamic range. We propose a physical explanation for this "brighter-fatter" effect, which implies that flatfields do not exactly follow Poisson statistics: the variance of flatfields grows less rapidly than their average, and neighboring pixels show covariances, which increase similarly to the square of the flatfield average. These covariances decay rapidly with pixel separation. We observe the expected departure from Poisson statistics of flatfields on CCD devices and show that the observed effects are compatible with Coulomb forces induced by stored charges that deflect forthcoming charges. We extract the strength of the deflections from the correlations of flatfield images and derive the evolution of star shapes with increasing flux. We show for three types of sensors that within statistical uncertainties,our proposed method properly bridges statistical properties of flatfields and the brighter-fatter effect

    Evaluation of heat treated wood swelling by differential scanning calorimetry in relation with chemical composition

    Get PDF
    24 pagesInternational audienceRetification® is a heat treatment which decreases the swelling of wood and increases its resistance to fungal attack. In this study, differential scanning calorimetry (DSC) was applied in order to determine the fiber saturation point (FSP) of natural and retified® wood. FSP values were used to determine the total swelling of natural and heat-treated wood. The DSC method was compared to the volumetric shrinkage approach. The influence of the heat treatment temperature and duration on the swelling of wood was investigated. Relationships between chemical changes and the reduction of swelling were analysed thoroughly. The equivalence of the DSC method and the volumetric shrinkage method is shown. FSP in association with anhydrous density is a good indicator for the evaluation of the overall swelling of heat-treated wood. Reduction of wood swelling with increasing temperature and duration of thermal treatment is often attributed to hemicelluloses destruction. This study shows that the reduction of beech wood swelling can not only be attributed to the disappearing of adsorption sites that goes with the hemicelluloses destruction. It is suggested that other phenomena such as structural modifications and chemical changes of lignin also play an important part

    Risk-informed decision-making in the presence of epistemic uncertainty

    Get PDF
    International audienceAn important issue in risk analysis is the distinction between epistemic and aleatory uncertainties. In this paper, the use of distinct representation formats for aleatory and epistemic uncertainties is advocated, the latter being modelled by sets of possible values. Modern uncertainty theories based on convex sets of probabilities are known to be instrumental for hybrid representations where aleatory and epistemic components of uncertainty remain distinct. Simple uncertainty representation techniques based on fuzzy intervals and p-boxes are used in practice. This paper outlines a risk analysis methodology from elicitation of knowledge about parameters to decision. It proposes an elicitation methodology where the chosen representation format depends on the nature and the amount of available information. Uncertainty propagation methods then blend Monte-Carlo simulation and interval analysis techniques. Nevertheless, results provided by these techniques, often in terms of probability intervals, may be too complex to interpret for a decision-maker and we therefore propose to compute a unique indicator of the likelihood of risk, called confidence index. It explicitly accounts for the decision-maker's attitude in the face of ambiguity. This step takes place at the end of the risk analysis process, when no further collection of evidence is possible that might reduce the ambiguity due to epistemic uncertainty. This last feature stands in contrast with the Bayesian methodology, where epistemic uncertainties on input parameters are modelled by single subjective probabilities at the beginning of the risk analysis process

    Lateral piezoelectric response across ferroelectric domain walls in thin films

    Full text link
    In purely c-axis oriented PbZr0.2_{0.2}Ti0.8_{0.8}O3_3 ferroelectric thin films, a lateral piezoresponse force microscopy signal is observed at the position of 180{\deg}domain walls, where the out-of-plane oriented polarization is reversed. Using electric force microscopy measurements we exclude electrostatic effects as the origin of this signal. Moreover, our mechanical simulations of the tip/cantilever system show that the small tilt of the surface at the domain wall below the tip does not satisfactorily explain the observed signal either. We thus attribute this lateral piezoresponse at domain walls to their sideways motion (shear) under the applied electric field. From simple elastic considerations and the conservation of volume of the unit cell, we would expect a similar lateral signal more generally in other ferroelectric materials, and for all types of domain walls in which the out-of-plane component of the polarization is reversed through the domain wall. We show that in BiFeO3_3 thin films, with 180, 109 and 71{\deg}domain walls, this is indeed the case.Comment: 31 pages, 10 figures. to appear in J. Appl. Phys. Special topic: invited papers from the international symposium on piezoresponse force microscopy and nanoscale phenomena in polar materials. Aveiro - portugal 200

    Thermo-gravimetric analysis as a tool for the optimisation of wood heat treatment parameters

    Get PDF
    9 pagesRetification is a heat treatment that decreases the swelling of wood and increases its resistance to fungal attack. It consists in a mild pyrolysis of wood (180°C-260°C) that takes place in a non oxidative atmosphere (nitrogen). The industrial development of retification requires optimisation of the treatment temperature and duration. In order to enhance the homogeneity of temperature in the furnace, and to avoid exothermic reaction, low temperatures seem to be preferable to high temperature. On the contrary, duration and temperature of treatment have to be high enough to provide good biological resistance and stabilization to the wood. However, high temperatures lead to a loss of mechanical strength. A question arises from these previous observations: is there any equivalence between a treatment of short time carried out at high temperature and a treatment of longer time at lower temperature? Answering this question can help to optimise rétification temperature and duration. The purpose of this study is to evaluate the relevance of a “time temperature equivalence” (TTE) for wood pyrolysis in the temperature range of retification. The principle of TTE is adapted from the study of wood viscoelastic properties. In this study, it is applied to the rate of anhydrous weight loss during wood pyrolysis. Thermo-gravimetric analysis (TGA) were performed on maritime pine (Pinus pinaster Ait.-) and beech (Fagus sylvatica) wood powder. Isothermal degradations were carried out at different temperatures ranging from 160°C to 260°C. A specific data analyse was carried out on the TGA derivative (DTG) in order to assess the relevance of the TTE in the temperature range of retification. It gave interpretable results for maritime pine, but not for beech. It showed that for maritime pine wood the TTE is confirmed from 200°C to 220°C, and not confirmed for temperatures superior to 230°C. An optimization of the temperature and time of treatment is thus possible

    La construction en pisé du Languedoc-Roussillon et de la Provence, du Moyen-Âge à l'époque moderne (XIIIe-XIXe s.).

    Get PDF
    International audienceA partir de la découverte d'architectures médiévales en terre crue très bien conservées dans le bâti contemporain ou retrouvées en fouille, de quelques textes modernes (XVIe-XVIIe s.) et d'un patrimoine très présent en Provence, les auteurs dressent un panorama de la construction en pisé dans le sud de la France entre le XIIIe s. et la fin du XIXe s. D'après les données actuelles, ce procédé semble se perpétuer uniquement en Provence après le XVe s., dans les vallées du Rhône et de la Durance

    Testing of the LSST's photometric calibration strategy at the CTIO 0.9 meter telescope

    Get PDF
    The calibration hardware system of the Large Synoptic Survey Telescope (LSST) is designed to measure two quantities: a telescope's instrumental response and atmospheric transmission, both as a function of wavelength. First of all, a "collimated beam projector" is designed to measure the instrumental response function by projecting monochromatic light through a mask and a collimating optic onto the telescope. During the measurement, the light level is monitored with a NIST-traceable photodiode. This method does not suffer from stray light effects or the reflections (known as ghosting) present when using a flat-field screen illumination, which has a systematic source of uncertainty from uncontrolled reflections. It allows for an independent measurement of the throughput of the telescope's optical train as well as each filter's transmission as a function of position on the primary mirror. Second, CALSPEC stars can be used as calibrated light sources to illuminate the atmosphere and measure its transmission. To measure the atmosphere's transfer function, we use the telescope's imager with a Ronchi grating in place of a filter to configure it as a low resolution slitless spectrograph. In this paper, we describe this calibration strategy, focusing on results from a prototype system at the Cerro Tololo Inter-American Observatory (CTIO) 0.9 meter telescope. We compare the instrumental throughput measurements to nominal values measured using a laboratory spectrophotometer, and we describe measurements of the atmosphere made via CALSPEC standard stars during the same run

    Evaluation of heat treated beech by non destructive testing

    Get PDF
    10 pagesImprovement of dimensional stability and durability is wished for the use of wood as a building material. For the last decade, retification® has been industrially developed. It consists in a stabilization and preservation of wood by heat treatment. The aim of this study is to find simple and fast methods to characterize heat treated beech. Non destructive testing is expected to be relevant to evaluate the level of treatment and the properties for the use of heat treated wood. Six treatments were carried out in a pilot reactor. The parameters of the retification® stage (temperature and time) were studied. For each treatment, the non destructive tests (free oscillations in the fundamental mode, colour and dry weight loss)were performed, and the properties for use (mechanical resistance and volumetric shrinkage) measured. Lightness and dry weight loss seem to be suitable properties to characterize beech retification® when the time parameter is fixed. However, they are not suitable for other wood species, and for retification stages with a variable duration. Moreover, the correlation with the properties for use were plotted, but presented too large dispersion to be relevant. After correction of moisture content, the longitudinal Young's modulus of the material is slightly increased by each of the six treatments, but do not present any variation with changing parameters values. On the contrary, the mechanical resistance decreased with increasing temperature and time. Thus the dynamic Young's modulus is not reliable to evaluate the treatment and to predict the loss of mechanical resistance. The logarithmic decrement was not increased by any of the treatments, which is in opposition with the hypothesis that retification® generates cracks and microcracks in the material. Effects of long time at low temperature have been investigated. From these experiments, properties of treated wood may be improved significantly by choosing appropriate values of the parameters

    Energy requirement for fine grinding of torrefied wood

    Get PDF
    International audienceThe purpose of this study is to investigate the influence of torrefaction on wood grinding energy. Wood chips were torrefied at different temperatures and durations. The energy required to obtain fine powder was measured. Particle size analyses were carried out on each powder sample. It is showed that torrefaction decreases both grinding energy and particle size distribution. A criterion to compare grindability of natural and torrefied wood is proposed. It takes into account both grinding energy and particle size distribution. It accounts the energy required for grinding particles to sizes inferior to 200 μm, for given grinding conditions. Torrefaction is characterised by the anhydrous weight loss (AWL) of wood. For AWL inferior to around 8%, grinding energy decreases fast. Over 8%, grinding energy decreases at a slow rate. Particle size distribution decreases linearly as the AWL increases. Both for spruce and beech, the grinding criterion is decreased of 93% when the AWL is around 28%
    corecore