69 research outputs found

    Ecological aspects of the substrate and water relations of deciduous and evergreen plant forms in the western Karoo

    Get PDF
    The principle aim of this work was to ascertain the relative importance of water and nutrient supply in determining the success of deciduous and evergreen plant forms on two main substrate types in the Worcester-Robertson valley, situated in the Succulent Karoo Biome. The substrate types selected for study represent soils of zoogenic soil mounds (locally termed "heuweltjies", and often referred to in the literature as "Mirna-like" mounds), and soils immediately adjacent to and surrounding the soil mounds. The distribution of deciduous and evergreen plant forms in the Worcester-Robertson valley was analys~d relative to the selected substrate types. Foliar elemental concentrations of four selected species growing on both substrates at five separate sites within the valley were determined. Also, the patterns of seasonal water stress exhibited by three deciduous and five evergreen non-succulent woody perennials growing in both substrates were investigated on high radiation (equator-facing) and low radiation (pole-facing) slopes at one intensive study site, the Worcester Veld Reserve

    Exploring the significance of land-cover change in South Africa

    Get PDF
    Changing land cover is a phenomenon that is growing in magnitude and significance, both globally1 and in South Africa2 . Changes in land cover include the conversion of natural vegetation to agricultural crops and forest plantations, changes to natural vegetation through bush encroachment and overgrazing, soil erosion, invasion by alien plant species, and accelerating urbanisation. Land-cover changes increasingly relate to climate and atmospheric changes in ways that are currently poorly understood but potentially significant, especially in terms of compromising or enhancing the delivery of vital ecosystem services from rangelands, agricultural croplands, water catchments and conservation areas. Land-cover change is being studied in different ways, and at different scales, by ecologists, plant physiologists, applied biologists and social scientists. A core group of scientists has recently formed the Land Cover Change Consortium (LCCC), which aims to begin integrating the results of the varied approaches to studying land-cover change, and to guide future research directions, with a view to building a better science base for informing policy and management decision-making in conservation, agriculture and environmental management. The group has developed a simple conceptual outline that links field experiments, observation and monitoring, modelling and prediction of land-cover change (Figure 1), and is currently developing a funding base to support collaboration in addressing fundamental questions about how ecosystems might change in the coming decades, in training new graduates, and in communicating effectively with policymakers. The LCCC hopes to provide a theoretical and practical multidisciplinary platform for scientific collaboration on global change issues that also includes different stakeholder groups and contributes to policy and decision-making. Multidisciplinary collaboration is notoriously challenging, but holds great promise for novel insights

    Climate Change Impacts on Hydrological Niches of Restionaceae Species in Jonkershoek, South Africa

    Get PDF
    The Restionaceae species of the Fynbos biome is part of the Cape Floristic Kingdom is threatened by urbanization, agricultural expansion, groundwater extraction, and climate change. Therefore, it is necessary to assess and monitor the Restionaceae species under the impact of climate change. South Africa is a semi-arid environment, and hydrological factors are the main variables in the determination of species niches. This study investigates the microclimate at Jonkershoek, and examines the impact of climate change to the plant species distribution, thus creating shifts in the hydrological niche. This study generates its own unique microclimate hydrological datasets for modelling species niche. The Restionaceae species and their hydrological niche at the Jonkershoek study area are assessed under future climate change scenario, at a microclimatic level. It provided evidence regarding the importance of the study to understanding the climate change impacts on hydrological niche and on species richness

    An operational definition of the biome for global change research

    Get PDF
    CITATION: Conradi, T. et al. 2020. An operational definition of the biome for global change research. New Phytologist, 227:1294–1306, doi:10.1111/nph.16580.The original publication is available at https://nph.onlinelibrary.wiley.comBiomes are constructs for organising knowledge on the structure and functioning of the world’s ecosystems, and serve as useful units for monitoring how the biosphere responds to anthropogenic drivers, including climate change. The current practice of delimiting biomes relies on expert knowledge. Recent studies have questioned the value of such biome maps for comparative ecology and global-change research, partly due to their subjective origin. Here we propose a flexible method for developing biome maps objectively. The method uses range modelling of several thousands of plant species to reveal spatial attractors for different growth-form assemblages that define biomes. The workflow is illustrated using distribution data from 23 500 African plant species. In an example application, we create a biome map for Africa and use the fitted species models to project biome shifts. In a second example, we map gradients of growth-form suitability that can be used to identify sites for comparative ecology. This method provides a flexible framework that (1) allows a range of biome types to be defined according to user needs and (2) enables projections of biome changes that emerge purely from the individualistic responses of plant species to environmental changes.Publisher's versio

    Post-2020 biodiversity targets need to embrace climate change

    Get PDF
    Recent assessment reports by the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) have highlighted the risks to humanity arising from the unsustainable use of natural resources. Thus far, land, freshwater, and ocean exploitation have been the chief causes of biodiversity loss. Climate change is projected to be a rapidly increasing additional driver for biodiversity loss. Since climate change and biodiversity loss impact human societies everywhere, bold solutions are required that integrate environmental and societal objectives. As yet, most existing international biodiversity targets have overlooked climate change impacts. At the same time, climate change mitigation measures themselves may harm biodiversity directly. The Convention on Biological Diversity\u27s post-2020 framework offers the important opportunity to address the interactions between climate change and biodiversity and revise biodiversity targets accordingly by better aligning these with the United Nations Framework Convention on Climate Change Paris Agreement and the Sustainable Development Goals. We identify the considerable number of existing and proposed post- 2020 biodiversity targets that risk being severely compromised due to climate change, even if other barriers to their achievement were removed. Our analysis suggests that the next set of biodiversity targets explicitly addresses climate change-related risks since many aspirational goals will not be feasible under even lower-end projections of future warming. Adopting more flexible and dynamic approaches to conservation, rather than static goals, would allow us to respond flexibly to changes in habitats, genetic resources, species composition, and ecosystem functioning and leverage biodiversity\u27s capacity to contribute to climate change mitigation and adaptation

    An operational definition of the biome for global change research

    Get PDF
    CITATION: Conradi, T. et al. 2020. An operational definition of the biome for global change research. New Phytologist, 227:1294–1306, doi:10.1111/nph.16580.The original publication is available at https://nph.onlinelibrary.wiley.comBiomes are constructs for organising knowledge on the structure and functioning of the world’s ecosystems, and serve as useful units for monitoring how the biosphere responds to anthropogenic drivers, including climate change. The current practice of delimiting biomes relies on expert knowledge. Recent studies have questioned the value of such biome maps for comparative ecology and global-change research, partly due to their subjective origin. Here we propose a flexible method for developing biome maps objectively. The method uses range modelling of several thousands of plant species to reveal spatial attractors for different growth-form assemblages that define biomes. The workflow is illustrated using distribution data from 23 500 African plant species. In an example application, we create a biome map for Africa and use the fitted species models to project biome shifts. In a second example, we map gradients of growth-form suitability that can be used to identify sites for comparative ecology. This method provides a flexible framework that (1) allows a range of biome types to be defined according to user needs and (2) enables projections of biome changes that emerge purely from the individualistic responses of plant species to environmental changes.Publisher's versio

    Mechanistic reconciliation of community and invasion ecology

    Get PDF
    CITATION: Latombe, G., et al. 2021. Mechanistic reconciliation of community and invasion ecology. Ecosphere, 12(2):e03359, doi:10.1002/ecs2.3359.The original publication is available at https://esajournals.onlinelibrary.wiley.comCommunity and invasion ecology have mostly grown independently. There is substantial overlap in the processes captured by different models in the two fields, and various frameworks have been developed to reduce this redundancy and synthesize information content. Despite broad recognition that community and invasion ecology are interconnected, a process‐based framework synthesizing models across these two fields is lacking. Here we review 65 representative community and invasion models and propose a common framework articulated around six processes (dispersal, drift, abiotic interactions, within‐guild interactions, cross‐guild interactions, and genetic changes). The framework is designed to synthesize the content of the two fields, provide a general perspective on their development, and enable their comparison. The application of this framework and of a novel method based on network theory reveals some lack of coherence between the two fields, despite some historical similarities. Community ecology models are characterized by combinations of multiple processes, likely reflecting the search for an overarching theory to explain community assembly and structure, drawing predominantly on interaction processes, but also accounting largely for the other processes. In contrast, most models in invasion ecology invoke fewer processes and focus more on interactions between introduced species and their novel biotic and abiotic environment. The historical dominance of interaction processes and their independent developments in the two fields is also reflected in the lower level of coherence for models involving interactions, compared to models involving dispersal, drift, and genetic changes. It appears that community ecology, with a longer history than invasion ecology, has transitioned from the search for single explanations for patterns observed in nature to investigate how processes may interact mechanistically, thereby generating and testing hypotheses. Our framework paves the way for a similar transition in invasion ecology, to better capture the dynamics of multiple alien species introduced in complex communities. Reciprocally, applying insights from invasion to community ecology will help us understand and predict the future of ecological communities in the Anthropocene, in which human activities are weakening species’ natural boundaries. Ultimately, the successful integration of the two fields could advance a predictive ecology that is urgently required in a rapidly changing world.https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3359Publisher's versio
    • 

    corecore