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1. Introduction 

The climate fluctuates and changes naturally, and adding the common problems of land 

transformation and deforestation, its impact can be very harsh on the natural environment, 

and cause a decline in the biodiversity of plants and animals. Aloe dichotoma, common name 

Quiver tree, is an important part of the arid regions, such as Namaqualand and 

Bushmanland in South Africa, and in arid parts of southern Namibia. This succulent tree 

species occurs in rocky areas, and it can grow quite rapidly under the right conditions. 

Succulents are able to survive long periods of drought conditions, due to the fact succulent 

plants has special water-storing tissue which makes part of the plant fleshy, and the Quiver 

tree has succulent leaf and stem (Van Wyk and Smith, 1996).  

The Quiver tree has a 200 year life span, and can grow up to 9 meters tall, and it occurs in 

summer and winter rainfall regions, and can live under a variety of climatic conditions 

(Fig. 1). The Quiver tree is important to the ecosystem due to the fact that it is as a source 

of moisture for a wide variety of mammals, birds, and insects. Foden’s detailed study of 

the demographic data of the Quiver trees show that negligible recruitment has occurred in 

certain populations for 50 years, and the effects of non-climatic variables, such as 

herbivory, competition, seed availability, fungal pathogens, plant collection... are very 

small (Foden, 2002).  

Today, the Quiver trees are threatened by agricultural expansion, overgrazing, and mining, 

as well as droughts and other climate changes (Foden, 2002). Climate changes is one of the 

major factors affecting the existence of Quiver trees, while the Quiver tree will unlikely to be 

affected by small climatic fluctuations, but will be affected larger or long term climatic 

changes. The Quiver tree can potentially provide a good indication of long term climate 

changes in the arid regions (Foden, 2002). 

Previous onsite observations show that Quiver trees are very sensitive to temperature 

changes, and does not do well under extreme hot and dry conditions. Observations has also 

shown that the Quiver trees might be responding to higher temperatures by shifting its 

distribution range towards higher and higher altitudes, showing a preference for slightly 

cooler regions (Midgley et al., 2009). 
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Fig. 1. Quiver trees in Kaukusib Koppie, Namibia, 2008 

To have a complete picture of the Quiver tree’s response to recent climatic changes, samples 
of Quiver trees were collected from their distributional range in arid Namibia and South 
Africa, and this is a continuing project funded by the South African National Biodiversity 
Institute. However, data uncertainty accompanied the sample collections as well.  
In 2001 and 2002, Wendy Foden and various assistants collected Quiver trees sample data 
across the whole range, sampling 53 sites in detail. In 2008 Graeme Ellis re-sampled a subset 
of the population, sampling 41 sites. In 2009, Res Altwegg and Cory Merow did a thorough 
analysis and comparison of between the 2 sets of data, for 35 sites, excluding certain sites 
due to lack of data for comparisons. 
In this chapter, we are going one step further, that is, to try to complete all the missing data 
values, which will allow us to do a more complete comparison. The incomplete data issue is 
complicated on many fronts:  
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1. While the 2001-2002 data are the most complete, however, there are several sites with 
missing variables from the 53 sample sites. 

2. The 2008 data is a subset of the original 2001-2002 data, covering 41 sites, and the 2008 
data variables are not the same as the 2001-2002 data variables. 

3. The 2009 analysed data comparison between 2001-2002 and 2008 data is for 35 sites, 
with 18 sites uncalculated due to missing data. 

4. With all 3 datasets, missing data is a major part of the problem, which renders the 3 
datasets incomplete and only partially comparable. 

 

 

Fig. 2. Available Quiver tree sample site data in Arid Namibia and South Africa 

Of course, another sample collection study would be ideal, but to due lack of funding and 

trained professionals, this is not possible at this stage. In any case, a full usage should be 

made of the 2002 and 2008 data. In Fig. 2, the Quiver trees sample sites are shown, the 

Quiver tree’s distribution extending over the arid regions in Namibia and South Africa. As 

one can see from the figure, the 2008 study is a subset of the original 2002 samples. 

2. Impreciseness in quiver tree‘s sample data 

To investigate the climate change impacts on the Quiver’s spatial distribution from 2002 to 
2008, we must have the Quiver‘s population evolution information. We as biodiversity 
scientists need to reveal the climate change impacts on plant species based on the data 
collected. Only solid data-oriented analysis can provide near-true information to the public 
and governmental decision-making body. In this case, the Quiver tree’s dataset is not 
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complete enough to perform a solid data-oriented analysis because of the impreciseness 
features of the dataset.  
Impreciseness is a fundamental and intrinsic feature in a solid data oriented spatial 
modelling exercises due to the observational data shortage and incompleteness. Facing the 
impreciseness reality the spatial statisticians often rely on expert's knowledge to compensate 
the inadequacy and in accuracy in collected observational data. Nevertheless, such a 
dependence on experts' knowledge engineering will still open a backdoor to pseudo-
scientific believe or claim.  
Impreciseness is referred to a term with an intrinsic property governed by an uncertain 
measure or an uncertainty distribution for each of the actual or hypothetical members of an 
uncertainty population (i.e., collection of expert's knowledge). An uncertainty process is a 
repeating process whose outcomes follow no describable deterministic pattern, but follow 
an uncertainty distribution, such that the uncertain measure of the occurrence of each 
outcome can be only approximated or calculated. 
Definition 2.1: Impreciseness is an intrinsic property of a variable or an expert's knowledge 
being specified by an uncertainty measure. 
In geo-statistics analyst communities it is seldom to mention uncertainty measure. It is true, 
spatial researchers are used to the term "uncertainty", which represents randomness in their 
eyes. Actually, this perception is wrong. Researchers have long realized the there are many 
forms of uncertainty, randomness is merely a member of uncertainty family. How can we 
differentiate different forms of uncertainty? The answer is fairly straght forward: the 
appropriate measure specifies a particular form of uncertainty. For example, probability 
measure specifies random uncertainty.  
The uncertainty modelling without a measure specification will not have an rigorous 
mathematical foundations and consequently the modelling exercise is baseless  
and blindness. In other words, measure specification is the prerequisite to spatial data 
collection and analysis. For example, without Kolmogrov's (1950) three axioms of 
probability measure, randomness is not defined and thus statistical data analysis and 
inference has no foundation at all. 
Notice that imprecise probability theory is a potential remedy to address the observational 
data inaccuracy and inadequacy because most the geo-statistics analysts are familiar with 
probability theory. However the imprecise probability based spatial modelling might be not 
feasible. Just as Utikin and Gurov (2000) has commented, “the probabilistic uncertainty 
model makes sense if the following three premises are satisfied:  (i) an event is defined 
precisely; (ii) a large amount of statistical samples is available; (iii) probabilistic 
repetitiveness is embedded in the collected samples. This implies that the probabilistic 
assumption may be unreasonable in a wide scope of cases.” 
It is therefore inevitably to seek another form of uncertainty theory to meet the 
impreciseness challenges. In the theoretical basket, interval uncertainty theory (Moore, 
1966), fuzzy theory (Zadeh, 1965, 1978), grey theory (Deng, 1984), rough set theory (1982), 
upper and lower provisions or expectations (Walley, 1991), or Liu’s uncertainty theory 
(2007, 2010) may be chosen. Nevertheless, Liu’s (2007, 2010) uncertainty theory is the only 
one built on an axiomatic uncertain measure foundation and fully justified with 
mathematical rigor. Therefore it is logical to engage Liu’s (2007, 2010) uncertainty theory for 
guiding us to understand the intrinsic character of imprecise uncertainty and facilitate an 
accurate mathematical definition of impreciseness in order to establish the foundations for 
uncertainty spatial modelling under imprecise uncertainty environments. 
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3. Uncertain measure foundation 

The Uncertainty Theory was founded by Liu in 2007 and refined in 2010 (Liu, 2007, 2010). 
Nowadays uncertainty theory has become a branch of mathematics.  

A key concept in uncertainty theory is the uncertain measure: Let   be a nonempty set 

(space), and  A  the  -algebra on  . Each element, let us say, A   ,  A A  is called 

an uncertain event. A number denoted as  A ,  0 1A  , is assigned to event 

 A A , which indicates the uncertain measuring grade with which event  A A  

occurs. The normal set function  A satisfies following axioms given by Liu (2011): 
Axiom 1: (Normality)   1  . 
Axiom 2: (Self-Duality)   is self-dual, i.e., for any  A A ,     1cA A   .  

Axiom 3: ( - Subadditivity)  
11

i i
ii

A A
 



    
  

   for any countable event sequence  iA . 

Definition 3.1: (Liu, 2007, 2010) A set function    : 0,1  A  satisfies Axioms 1-4 is called 

an uncertain measure. The triple   , ,  A  is called an uncertainty space. 

Definition 3.2: (Liu, 2007, 2010) An uncertain variable is a measurable function ξ from an 

uncertainty space   , ,  A to the set of real numbers. 

Definition 3.3: (Liu, 2010) Let be a uncertainty quantity of impreciseness on an uncertainty 

measure space   , ,  A . The uncertainty distribution of   is 

     |x x        (1) 

Theorem 3.4: (Liu, 2007, 2010) Let 
1 2
, , ,

n     be uncertainty distributions for the 

uncertainty variables 1 2, , , n   on   , ,  A respectively. Let  1 2, , , n    be the joint 

distribution of uncertainty vector  1 2, , , n   . If  1 2, , , n    are independent, then 

      
1 2 1 2, , ,

1
, , , min

in n i
i n

x x x x    
     (2) 

for any real numbers 1 2, , , nx x x   . 

Definition 3.5: (Liu, 2007, 2010) Let be a uncertainty variable on an uncertainty measure 

space   , ,  A . The expectation   is defined by 

 

     
0

0

r dr r dr  




      
 

(3)

 

provided that one of the two integrals exists at least. 

Definition 3.6: (Liu, 2007, 2010) Let be a uncertainty variable on an uncertainty measure 

space   , ,  A .with uncertainty distribution function and  a finite expectation  . 

Then the variance of  , denoted by  V  , is defined by 

 

        
0

2 1 2 .V r r r dr   


    
 

(4)

 

Liu's uncertainty theory (Liu, 2007, 2010) does not define multivariate uncertainty 
distribution, (Guo, 2010; Guo et al., 2007), except for the independent uncertainty variables. 
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Hence it is necessary to facilitate a framework for showing the preparation to define the 
uncertain covariance. 

Let 
1 2
, , ,

n     be uncertainty distributions for the uncertainty variables 1 2, , , n   on 

  , ,  A respectively. Let  1 2, , , n    be the joint distribution of uncertainty vector 

 1 2, , , n   . Assuming that i and j two arbitrary pair of uncertainty variables within 

the uncertainty vector  1 2, , , n    which have finite expectations 1 and 2  respectively. 

Denote ( , )i j
   bivariate uncertainty distribution function.  

Definition 3.7: Let   ij i i j j       be product of centered uncertainty variables  i and 

j . The uncertainty distribution of ij is defined by 

        
1 2

2

,
sup , ,  ,

ij i j
i j i j

z z y

y z z z z  


      (5) 

Definition 3.8: Let   ij i i j j       be product of centered uncertainty variables  i and 

j . The expectation of centered product ij is called the covariance between uncertainty 

variables  i and j , that is by   

     
0

0

1
ij ijij ij r dr r dr





              (6) 

Theorem 3.9: Let 1 2, , , n    be independent uncertainty variables on  , , A . Then 

         
1 2

1 2

2
1 2sup ,  ,

ij i j
z z y

y z z z z  


       (7) 

Remark 3.10: Different from independent random variables 1X and 2X , whose 

     1 1 2 2 0.X X X X         In uncertainty theory, independent 1 2, , , n    do not 

imply 0ij  . 
Remark 3.11: The formation of uncertain variance-covariance does touch the detailed 
functional form of multivariate uncertainty joint distribution.  For practical applications, the 
form of multivariate uncertainty joint distribution is not necessarily available, but the paired 
uncertainty bivariate distribution must be given.  

Similar to the concept of stochastic process in probability theory, an uncertain process 

 ,  0t t  is a family of uncertainty variables indexed by t and taking values in the state 

space   .  

Definition 3.12:  (Liu, 2007, 2010) Let  , 0tC t  be an uncertain process.  

(1) 0 0C  and all the trajectories of realizations are Lipschitz-continuous; 

(2)  , 0tC t  has stationary and independent increments; 

(3) every increment t s sC C  is a normal uncertainty variable with expected value 0 and 

variance 2t , i.e., the uncertainty distribution of t s sC C  is 

  
1

1 exp
3t s sC C

z
z

t




       

  


 (8) 

then  , 0tC t   is called an uncertain canonical process. 
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Theorem 3.13: Assuming that  , 0tC t  is an uncertain canonical process. Therefore, in the 

autocovariance and autocorrelation of uncertain canonical process  , 0tC t  are 

  2 2
, ,s t s t s s t ss C C C s           (9) 

and 

  ,
, ,  s t s

s t

s
s t

t st


     (10) 

where 

  

 
0

0

,

1 sup ( ) ( )

[ ( )]

sup ( ) ( )

s t s

s t s

s t

C C
xy r

C C
xy r

s t s sC

x y

x y

E C C

dr

dr











 



 
    

 

 

  









 (11) 

4. Habitat measure 

Note that the Quiver tree’s 2002 data subset contains percentage of dead trees, percentage of 

juvenile trees, the total density of trees, and the average age of dead trees. Also, Quiver 

tree‘s 2008 data subset contains population growth rate, survival reproductives, survival 

non-reproductives, and proportion juvenile. Considering the aim of this research: climate 

change impacts on  the Quiver tree’s population, we select total density of tree (in 2002 data 

subset) and population growth rate (in 2008 data subset) as the our analysis data.  We will 

build our model based on the total tree population size 

 
     k kk
i iV A 

 
(12)

 

where the  k
iV is the total population size at year i over area size  k

A , and total density 
 k
i . 

Notice that among 53 sites, 43 sites have total density observational values. Ten sites have 
missing values. That is, without total density observation {10,12,14,15,17,19,33,36,37,128} site 
number set.  
For inexperienced go-statistics analysts, kriging method might be a choice for filling the ten 
missing vaules. Nevertheless, after examining the 2002 total density of tree‘s 43 
observations, we found that geometric distance does not play a role in dertermining the 
value of the total density of trees. we can find out that the total density observations are not 
similar even for the very nearby sites geometrically within the same ecological sub-region.  
For example, Site , see Table 1.  

From Table 1, it is obvious that for the Quiver tree‘s growth status,   2,Z s s , the 

spatial location 2s only partially links to the tree habitation. While the geometric 

distance between two locations s and s h  is no longer fully reflecting the habitat closeness.  

The Quiver tree‘s growth status observations reveal a fact that the total density status is 

extremely sensitive to the ecological conditions of individual site area (or the area habitat). 
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The graphical location and the isotropic distance will not offer much information, rather the 

Quiver tree‘s growth observation  Z s gives the best indication of the tree area habitat.  

 

Group/ 
site no. 

Coordinates Total 
density of 
trees 

Geometric 
distance 

Difference in 
total density 

Density
/ 
distance longitude latitude 

1 
40 21.64455 -30.00486 36.41 1.1977228 

 
65.42 
 

54.62 
42 22.83446 -29.86828 101.83 

2 

101 18.20583 -30.15250 70.00 0.285919122 
0.688683879 
0.787944636 

6.67 23.33 

102 17.92017 -30.14033 63.33 16.67 24.20 

103 17.83583 -29.45683 46.67 23.33 29.61 

3 
3 19.25749 -27.49479 33.33 0.003999625 

 
52.38 
 

13096.47 
 4 19.26062 -27.49230 54.17 

Table 1. 3 groups of sites and their total densities 

The measure of habitat closeness can be defined by the habitat distance, which is a virtual 

distance indicating the aggregate ecological environment of an area. In such a circumstance, 

if we still impose conventional isotropic distance assumption to construct a kriging 

predictor, the prediction would be no sense at all.  

It is logical to argue that in order to utilize the n observations   
0

2, sZ s s  N  contained 

in the neighbourhood of 0s :  
0 0 1 2, , , ,s ns s s s N , at 0s  without an Quiver tree‘s 

observation, to predict  0Z s , utilize the habitat distance information is far more efficient 

that the conventional isotropic distance.  

As to how to define the habitat distance measure, it depends upon the habitat spatial 

distribution pattern as well as the form of uncertainty governing the spatial 

process   2,Z s s .   
In this study, we are going to calculate habitat distance in following three approaches: 

(1) Grouping method. This approach classifies total density observations   2,Z s s into 

groups by the sizes of  Z s . Then, for each group, the variance is calculated. choose the 

variance of group observation as habitat measure. We may face the situation at which some 

 Z s values may be far away from those grouped observations. Then we may group them 

according to geometrical distance criterion, then calculate the variances for those isolated 

total density observations. Table 2 lists a few observational groups and group habitat 

distances. 
It is logical to ignore those 3 groups because of extreme group variances, which should not 
accepted as habitat measures. 
(2) Inverse-distance methods. Notice that there are ten sites without total density 
observations and thus their habitat measures cannot be determined. However, later we will 
see the empirical habitat measure is necessary for uncertain kriging. 
In this paper, we propose two schemes for addressing the habitat measure at missing total 
density value site. The first one is the conventional inverse distance estimation. The second 
one is utilizing the empirical habitat distance for uncertain inverse distance estimation. 

The conventional inverse distance estimation. Table 5 summarizes the results (at 1.0   
because near optimal 0.1  gives illogical empirical results). 
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Group/ 
Site no. 

Coordinates Total density 
of trees 

Habitat 
measure longitude latitude

1 

42 22.83446 -29.86828 101.83

1.1112310 11 18.18643 -26.21253 100.00

113 22.18500 -29.06700 100.00

2 

20 16.23986 -25.59329 90.48

2.0052690 13 15.15805 -21.48867 91.70

124 19.43333 -28.83333 93.30

3 

4 19.26062 -27.49230 33.33

3.4715580 
2 19.28217 -28.66671 33.33

40 21.64455 -30.00486 36.41

123 19.40000 -28.98333 36.70

4 

104 17.28650 -28.30430 40.00

11.1111222 108 19.45333 -28.10333 43.33

103 17.83583 -29.45683 46.67

5 

107 18.56950 -27.68433 113.33

11.5226107 29 15.47427 -26.58937 106.67

30 16.76122 -27.03209 111.11

6 

41 22.37461 -29.29727 86.05

11.5534900 
121 19.43333 -29.06667 80.00

122 19.43333 -29.06667 80.00

3 19.25749 -27.49479 85.71

7 

112 22.37000 -28.93500 130.00

14.9633000 126 21.10000 -29.40000 123.30

26 16.31455 -27.64893 130.00

8 
23 15.62385 -26.99582 22.22

17.0993200 
9 17.01403 -26.66638 28.07

9 

102 17.92017 -30.14033 63.33

19.9113500 

1 18.78301 -28.71597 63.33

101 18.20583 -30.15250 70.00

125 20.23333 -28.61667 70.00

120 18.83333 -30.70000 73.30

10 

110 18.98883 -31.10050 50.00

21.5049200 5 19.59336 -26.79313 54.17

24 15.78774 -27.31541 59.26

11 

106 17.98333 -26.40217 166.67

53.3333900 

18 16.21400 -23.95119 153.33

105 18.23967 -26.47550 153.33

22 15.36674 -26.88367 166.67

28 16.14727 -26.54360 166.67

Table 2. Groups of total densities and habitat measures (group variances)  
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It is obvious that there are five sites left listed in Table 3. 
 

Group/  
site no. 

Coordinates Total density 
of trees 

Group variance 

longitude latitude 

12 127 21.16667 -29.08333 6.70  

13 34 16.77862 -27.64536 282.61 1843.7403440 
 111 18.98567 -31.10583 343.33 

14 109 20.79000 -28.74017 200.00 12482.0000000 
 21 16.31081 -25.88543 252.17 

Table 3. 3 Groups of total densities left with group variances 

 

Site no. Coordinates Predicted total 
density of trees 

Predicted habitat 
measure longitude latitude 

15 14.57582 -21.20986 103.2131 1.1112310 

14 14.63088 -21.26169 102.9913 1.1112310 

12 15.21586 -21.81786 102.3649 1.1112310 

17 15.51133 -23.30893 110.5426 11.5226107 

19 16.39317 -25.14609 115.2105 11.5226107 

33 16.77479 -27.94278 121.9919 14.9633000 

36 17.47540 -27.45209 106.7434 11.5226107 

10 17.78013 -25.87191 110.3903 11.5226107 

37 17.80606 -27.67034 101.0099 1.1112310 

128 21.10000 -28.95000 82.67477 11.5534900 

Table 4. 10 Sites of Inverse Distance predicted total densities 

From Table 4, we can see that since the estimated total density estimators are calculated in 

terms of graphical distances. Those estimators are empirical prior information. As to habitat 

measure, they are taking the values by comparing the estimated total density to the group 

total density values in Table 4. Definitely, the empirical habitat measures are not all 

accurate. 

(3) Uncertain canonical process regression methods. Because the Quiver tree‘s total density 
is very sensitive to local area ecological environments, it is logical to consider if some 
uncertain relationship between the observed total density and ecological environmental 
variables, say, annual temperature, and annual rainfall. Table 4 lists the data, from which a 
linear relationship between group average total density 

idy  and group average annual 
temperature 

idT and group average annual rainfall 
idR at the empirical distance 

,id 1,2, ,11i   , is intended to establish. 
The uncertain regression model takes a form: 

 0 1 2 ,

1,2, ,11
i i i id d d dy T R C

i

      

 
 (13) 
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where errors
idC , 1,2, ,11i   are from the uncertain canonical process   , 0,dC d  . As 

to   , 0,dC d  . The fitted regression is 

      66.6838 6.1464 2.0621
ˆ 500.4016 30.1100 8.8953 ,

1,2, ,11

i i id d dy T R

i

  

 
 (14) 

 

Site no. Coordinates Predicted total 
density of trees 

Predicted habitat 
measure longitude latitude 

15 14.57582 -21.20986 110.3210 11.5226 

14 14.63088 -21.26169 26.5995 17.0993 

12 15.21586 -21.81786 55.0573 21.5049 

17 15.51133 -23.30893 83.5152 11.5535 

19 16.39317 -25.14609 8.72890 2.0582 

33 16.77479 -27.94278 147.0394 53.3334 

36 17.47540 -27.45209 72.2531 19.9114 

10 17.78013 -25.87191 20.9684 17.0993 

37 17.80606 -27.67034 29.9036 17.0993 

128 21.10000 -28.95000 101.3857 1.1112 

Table 5. 10 Sites of Regression Predicted total densities left with habitat measures  

However, it is necessary to mention that the uncertain regression model is carried on the 

group average total density against group average annual temperature and group annual 

rainfall and thus the predictability is limited although the model goodness-of fit ( 2 0.7R  ) 

is far better than that of classical regression model ( 2 0.21R  ), whose coefficients for annual 

temperature and annual rainfall are both insignificant statistically. We are not going to use 

these regression predicted total density of trees as the basic results for evaluations of climate 

change impacts. 

Finally, we must emphasize that for any given spatial process   2,Z s s , which has no 

order,  this fact would prevent geostatistical analysts from utilizing 1-dimensional statistical 

approaches for predictions, for example, the uncertain regression engaged. But after 

defining appropriate habitat distance for spatial process, then the habitat distance set can be 

indexed an uncertain canonical process as the desired partner process, and hence the 

intrinsic covariance structure of the partner process will be available and thus simplify 

greatly the semi-variogram computations, while in probabilistic kriging the theoretical semi-

variogram must be replaced by sample or experimental semi-variogram. The uncertain 

semi-varogram is semi-data oriented, in contrast, the probabilistic sample or experimental 

semi-variogram is fully data-oriented. 

5. Uncertain kriging predictor 

We first point out that kriging predictor is not intrinsic to the probabilistic spatial statistics. 

As long as variance, covariance, and semi-variogram concepts can be established on some 

uncertain theory, no matter it is Zadeh’s fuzzy theory, rough set theory, grey theory, 

random set theory, or interval theory, or Liu’s uncertainty theory, new kriging predictor can 
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be solidly established with similar mathematical formulae as that of probabilistic ordinary 

kriging (Cressie, 1991). However, the geometric location s should be replaced by habitat 

distance  d s , which is the square root of habitat measure.  
An uncertain semi-variogram is defined by  

       2
i j i js s s sd d V Z d Z d     (15) 

where 
isd and 

jsd  are two habitat distances at location is and location js respectively.  
The uncertain kriging predictor is defined by 

 

   
0

1
i

n

s i s
i

Z d Z d



 

(16)
 

where 1 2, , , n  
 
are determined by minimizing the following objective function. 

    
0

2

1 1

2 1
i

n n

s i s i
i i

Z d Z d  
 

           
     

   (17) 

where  is the Lagrange’s multiplier. Then the uncertain kriging equation system is given 

by 

 
1

U U U    (18) 

where 

 

 

      
    

 

1 0 2 0 0

'
1 2

'

1 1

2

, , , , ,  

, , , ,1

          1,2, ,

1,2, ,

1     1, 1,2, ,

0             1

n

i j

U n

U s s s s s s

U ij
n n

s s
ij

d d d d d d

i j n

d d i j n

i n j n

i j n

    

   







  



   

 

  

    
   


  











 (19) 

Theorem 5.1:  Let  

  '1 2, , , n      (20) 

then,  

 

 ' 1

' 1
' 1

1 1
1

1 1


 






  
   
 
   

(21)
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where 

 

 ' 1

' 1

1 1

1 1








 
 


 

(22)
 

Theorem 5.2:  Let , ,  
i j j i i js s s s s sd d d d d  . Then the semi-variogram of habitat distance 

,i js sd is 

 
   , ,

1

2i j j i s s si j i
s s s s d d dd d d    

 
(23)

 

Proof: It is noticed that for 
i js sd d 

 

 

 
    
      
     

     
          

 
   
 

,

2

2

22

2 2

,

,

,

1

2

1

2

1 1

2 2

1

2
1

2
1

2
1

2

i j

i j

i j

i j

i j

i j

i j s si j

i j i s s si j i

j i s si j

s s

s s

s s

s s

s s

i j s s

s s d d

s s s d d d

s s d d

d

Z d Z d

Z d m Z d m

Z d m Z d m

Z d m Z d m

Z s Z s d d

d d

d d d

d d



   









 
   

 
 

     
 

            
     

      

  

   

  
si

d

 (24) 

However, at location 0s , there is no observation  0Z s and thus the habitat distance 
0sd is 

undefined. It is necessary to "define"  the habitat distance 
0sd in order to carry on the 

uncertain kriging predictions. 

Definition 5.3:  If geometric location ks is close to 0s , at which  kZ s is observed, then the 

habitat distance of  kZ s is defined as the habitat distance 
0sd at location 0s . 

There is possibility that some 0
npi  . Sort   1 2, , , n   such that      1 2 n     , 

assuming    1
: 0, 0

p p
p i i

i  


  e that there are npn  terms which but  
0

1

1
sn

i
i




 , but 

 
0

1

1
sn

i
i




 . Let us define the adjusted coefficient adjusted
i  as 
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  

 
 

 

 

     

 

 

     
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0
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i i
i

i i
















  
  
  
       
      













 (25) 

It is obvious that constraint 

  
 

 0

1

1.0
sn

adjusted
i

i




  (26) 

is truly kept and also all  0,1adjusted
i  . 

We will calculate those uncertain kriging predictors for the ten sites {10,12,14,15,17,19,33,36, 
37,128} without total density observations in following 4 steps. 
Step 1: Determine the 10 neighbourhoods 

 
  
0

10

1
k

s
k


 

(27)
 

where    0 10,12,14,15,17,19,33,36,37,128
k

s  . Each  
0
k

s
  contains six sites with observed 

total density values. 

Step 2: For each individual neighbourhood  
0
k

s
 , for example,  

      
0

1 2 6, , ,k

k k k

s
s s s  , 

determine the corresponding habitat distance from Table 3, 4, and 6, respectively, denoted 

by 

 
 

        
1 2 6 0

, , , ,k k k k

k

s s s
d d ds d   (28) 

Step 3: Calculate those uncertain semi-variograms  

       ,
,  k k k k

i j i js s s s
d d d     
   and 

 
        
0 0,

,  k k k k
i is s s s

d d d   (or         
0 0,

,  k k k k
i is s s s

d d d   ) (29) 

in terms of  

              ,,

1

2
k k k k

k k k
i j j i s s si j i

d d ds s s s
d d d  
        
   

 (30) 
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with 

 

     
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
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 
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










 (31) 

Step 4: Calculate 
    1 6, ,
k k  according to equation (25). 

Step 5: Calculate the kriging predictor 

 
       

 

0
1

kn
k k k

i i
i

Z s Z s


  (32) 

The upper bound  1 6
k

n  , in case of   6
k

n  , which implies some locations have the 

same habitat distance value, we simply put the average of total density values with the same 

habitat distance to participate the uncertain kriging predictor computations.  
Step 6: Repeat Step 2 to Step 5, until all 10 uncertain kriging predictors are calculated. Then 
stop. 
Table 7 summarizes uncertain kriging predictor values, and lists the no total density 
observation sties (similar to Table 6). 
 

site no. 
Coordinates Uncertain kriging predicted 

total density of trees longitude latitude 

15 14.57582 -21.20986 132.446 

14 14.63088 -21.26169 155.987 

12 15.21586 -21.81786 177.641 

17 15.51133 -23.30893 132.567 

19 16.39317 -25.14609 99.266 

33 16.77479 -27.94278 62.493 

36 17.47540 -27.45209 117.045 

10 17.78013 -25.87191 121.982 

37 17.80606 -27.67034 72.249 

128 21.10000 -28.95000 44.087 

Table 6. Uncertain Kriging Predictions for 10 sites 

Next, we will use uncertain kriging methods to predict the missing values for the 
population growth rate. There are 18 sites without values: Site number 
{120,111,110,125,22,23,24,26,123,124,121,122,17,34,126,128,127,42}  
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site no. 
Coordinates 

Habitat 
measure 

Uncertain kriging 
Predicted population 
growth rate 

longitude latitude 

120 18.83333 -30.7 19.91135 1.02490171 

111 18.98567 -31.1058 1843.74 1.027150902 

110 18.98883 -31.1005 21.50492 1.025065854 

125 20.23333 -28.6167 19.91135 1.01815189 

22 15.36674 -26.8837 53.33339 0.995053254 

23 15.62385 -26.9958 17.09932 1.030192199 

24 15.78774 -27.3154 21.50492 1.036620495 

26 16.31455 -27.6489 14.9633 1.006659104 

123 19.4 -28.9833 3.471558 1.001714497 

121 19.43333 -28.8333 2.005269 1.004648936 

124 19.43333 -29.0667 11.55349 1.014237773 

122 19.43333 -29.0667 11.55349 1.014237773 

17 15.51133 -23.3089 11.5535 0.999365585 

34 16.77862 -27.6454 1843.74 1.000142274 

126 21.1 -29.4 14.9633 1.02687582 

128 21.1 -28.95 1.1112 1.014980439 

127 21.16667 -29.0833 2.0582 1.005842705 

42 22.83446 -29.8683 1.111231 1.003521691 

Table 7. Uncertain Kriging Predictions for 18 sites 

6. Climate change impacts 

Now we are ready to calculate the missing values of 2008 total density of trees, which are 25 
sites. We utilize the compound growth rate formula: 

 

      62008 2002 1
k k k

r  
 

(33)
 

Denote the Site k population growth rate during i years' period as  
 k

i
 , then, we can use 

the compound growth formula, 

 
 
    1

i
k k

i
r  

 (34) 
Then 

  
 
  1

exp ln 1
kk

i
r

i
   

 
 (35) 

Therefore, if the total density  
2002
k is available, no matter it is observed or predicted in  

terms of uncertain kriging approach,  
2008
k will be determined. 

After the calculations, we have complete data of  
2008
k and  

2008
k for site k , then The change 

in site k  will be 
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     

2008 2002
k kk   

 
(36)

 

The final uncertain predicted results together with the original sampled results of 2002 and 
2008 are shown in the Fig. 3. The reason that they look exactly the same with absolutely no 
difference at all, is because the increase and decrease in total densities are so small, that they 
cannot be viewed just by looking at the intervals. 
 

   

Fig. 3. Sampled and Predicted total density of Quiver trees in Namibia and South Africa, 
2002 and 2008 

In Fig. 4 the Ordinary kriging prediction maps of sampled and predicted total density of 

Quiver trees in 2002 and 2008 are shown.  Since the population increase and decrease are 

very small, which is why they are only reflected using kriging maps. However, the kriging 

maps are slightly distorted in value, due to re-calculations of sample and predicted values, 

and the average mean values are used. 

Table 8 and Fig. 5 show the change in the total density of Quiver trees over a 6 year period, 

between 2002 and 2008. 

 

 
Negative change

(   0
k  ) 

Positive change

(   0
k  ) 

unchanged

(   0
k  ) 

No. Of sites 7 18 28 

Percentages 13.21% 33.96% 52.83% 

Table 8. Climate change impact on total density of Quiver trees over 6 year period 
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Fig. 4. Ordinary Kriging prediction maps of the total density of Quiver trees, 2002 and 2008 

 

 

Fig. 5. Predicted change in total density of trees, and calculated population growth of 
Quiver trees, between 2002 and 2008 

As one can see from the Fig. 5 change map, the change in total density of trees is very small. 
Most sample sites show no changes at all, with 18 sites show an increase of 1 to 9 trees, and 7 
sites showing a decrease of 1 to 8 trees. These are small but definite changes in Quiver tree‘s 
total density over the 6 year period, between 2002 and 2008. 
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7. Conclusion 

In this paper, we utilize the partially collected Quiver tree's sample data, 2002 and 2008 
datasets, particularly, the total density of trees to evaluate the climate change impact on the 
Quiver tree‘s population. Because the data collection sites are only 53 and the Quiver tree‘s 
population size is extremely sensitive to it habitat environment, the conventional 
methodologies are not applicable. Based on our observations, we propose the habitat 
measure to catch up the closeness of the Quiver tree‘s population, which is later defining the 
habit distance of the tree‘s population. The habitat distance set is then regarded as the 
partner process index set. Therefore, we are able to engage Liu's Uncertainty theory for 
developing a new uncertain kriging approach to facilitate the prediction task: utilizing 
"complete" (53 values) data to perform the change evaluation. Once the missing values are 
filled, the evaluation of climate change can be performed. We are aware that our new 
prediction results have not had a validation process because of the time-constraint. In the 
future, it is necessary to engage the model accuracy and validation checking. Overall, there 
is a small but definite change in Quiver trees over the 6 year period, between 2002 and 2008, 
possibly due to climate changes over time.  
Of course, monitoring the Quiver trees and using it as a climate change indicator, is a 
continuing process and effort for the South African National Biodiversity Institute. The 
results from this paper help to complete the missing data or un-sampled data, and would be 
useful for future comparisons, when another sample collection is made. The uncertain 
prediction methods and calculation process may be useful with other kinds of plant species 
data that displays similar problems, such as missing sample values. The predicted values 
together with the real sample values could be very useful in examining climate change 
impact over time and for studying the comparisons of plant species from different periods. 
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