13,265 research outputs found

    Local Volume Effects in the Generalized Pseudopotential Theory

    Get PDF
    The generalized pseudopotential theory (GPT) is a powerful method for deriving real-space transferable interatomic potentials. Using a coarse-grained electronic structure, one can explicitly calculate the pair ion-ion and multi-ion interactions in simple and transition metals. Whilst successful in determining bulk properties, in central force metals the GPT fails to describe crystal defects for which there is a significant local volume change. A previous paper [PhysRevLett.66.3036 (1991)] found that by allowing the GPT total energy to depend upon some spatially-averaged local electron density, the energetics of vacancies and surfaces could be calculated within experimental ranges. In this paper, we develop the formalism further by explicitly calculating the forces and stress tensor associated with this total energy. We call this scheme the adaptive GPT (aGPT) and it is capable of both molecular dynamics and molecular statics. We apply the aGPT to vacancy formation and divacancy binding in hcp Mg and also calculate the local electron density corrections to the bulk elastic constants and phonon dispersion for which there is refinement over the baseline GPT treatment.Comment: 11 pages, 6 figure

    The pulsed air gust generator Final report

    Get PDF
    Wind tunnel simulation of jet pulsing apparatus for controlled gust

    Heavy Quark Lifetimes, Mixing and CP Violation

    Get PDF
    This paper emphasizes four topics that represent some of the year's highlights in heavy quark physics. First of all, a review is given of charm lifetime measurements and how they lead to better understanding of the mechanisms of charm decay. Secondly, the CLEO collaboration's new search for charm mixing is reported, which significantly extends the search for new physics in that sector. Thirdly, important updates in Bs mixing are summarized, which result in a new limit on the mass difference, and which further constrain the unitarity triangle. Finally, the first efforts to measure CP violation in the B system are discussed. Results are shown for the CDF and ALEPH measurements of sin(2beta), as well as the CLEO branching fraction measurements of B-->Kpi,pipi, which have implications for future measurements of alpha.Comment: 25 pages, 15 figures. Talk given at the XIX International Symposium on Lepton and Photon Interactions, Stanford University, August 9-14, 199

    Bargmann representations for deformed harmonic oscillators

    Full text link
    Generalizing the case of the usual harmonic oscillator, we look for Bargmann representations corresponding to deformed harmonic oscillators. Deformed harmonic oscillator algebras are generated by four operators a,a†,Na, a^\dagger, N and the unity 1 such as [a,N]=a,[a†,N]=−a†[a,N] = a, [a^\dagger,N] = -a^\dagger, a†a=ψ(N)a^\dagger a = \psi(N) and aa†=ψ(N+1)aa^\dagger =\psi(N+1). We discuss the conditions of existence of a scalar product expressed with a true integral on the space spanned by the eigenstates of aa (or a†a^\dagger). We give various examples, in particular we consider functions ψ\psi that are linear combinations of qNq^N, q−Nq^{-N} and unity and that correspond to q-oscillators with Fock-representations or with non-Fock-representations.Comment: 23 pages, Late

    The irrationality of a number theoretical series

    Full text link
    Denote by σk(n)\sigma_k(n) the sum of the kk-th powers of the divisors of nn, and let Sk=∑n≥1σk(n)n!S_k=\sum_{n\geq 1}\frac{\sigma_k(n)}{n!}. We prove that Schinzel's conjecture H implies that SkS_k is irrational, and give an unconditional proof for the case k=3k=3

    Pacific Hake, Merluccius productus, Autecology: A Timely Review

    Get PDF
    Pacific hake, Merluccius productus, the most abundant groundfish in the California Current Large Marine Ecosystem (CCLME), is a species of both commercial significance, supporting a large international fishery, and ecological importance, connecting other species as both predator and prey. Coastal Pacific hake migrations are characterized by movements between northern summer feeding areas and southern winter spawning areas, with variations in annual abundance, distribution, and the extent of these movements associated with varying climate-ocean conditions. In general, warm (cool) years with enhanced (reduced) stratification and poleward (equatorward) transport are often related to good (poor) recruitment, increased (decreased) northward distribution, and reduced (enhanced) growth. However, the classic periodic pattern of annual migration and distribution may no longer be fully representative. Based on recent advances in the understanding of climate-ocean variability off the U.S. west coast, we hypothesize that the annual movements of Pacific hake are more responsive to climate-ocean variability than previously thought, and further, that changes observed in Pacific hake distributions may reflect long-term changes in climate-ocean conditions in the CCLME. Therefore, an updated model of these relations is key to effective monitoring and management of this stock, as well as to devising scenarios of future change in the CCLME as a result of climate variations. The current state of knowledge of the relationship between the Pacific hake and its environment is reviewed, highlighting emerging ideas compared to those of the past, and priorities for future research are suggested

    Determination of the critical current density in the d-wave superconductor YBCO under applied magnetic fields by nodal tunneling

    Full text link
    We have studied nodal tunneling into YBa2Cu3O7-x (YBCO) films under magnetic fields. The films' orientation was such that the CuO2 planes were perpendicular to the surface with the a and b axis at 450 form the normal. The magnetic field was applied parallel to the surface and perpendicular to the CuO2 planes. The Zero Bias Conductance Peak (ZBCP) characteristic of nodal tunneling splits under the effect of surface currents produced by the applied fields. Measuring this splitting under different field conditions, zero field cooled and field cooled, reveals that these currents have different origins. By comparing the field cooled ZBCP splitting to that taken in decreasing fields we deduce a value of the Bean critical current superfluid velocity, and calculate a Bean critical current density of up to 3*10^7 A/cm2 at low temperatures. This tunneling method for the determination of critical currents under magnetic fields has serious advantages over the conventional one, as it avoids having to make high current contacts to the sample.Comment: 8 pages, 2 figure

    Wave Sensing in the Upper-Great Lakes Observing System (Extended Abstract)

    Get PDF
    • …
    corecore