367 research outputs found
Dihydropyrimidine-thiones and clioquinol synergize to target beta-amyloid cellular pathologies through a metal-dependent mechanism
The lack of therapies for neurodegenerative diseases arises from our incomplete understanding of their underlying cellular toxicities and the limited number of predictive model systems. It is critical that we develop approaches to identify novel targets and lead compounds. Here, a phenotypic screen of yeast proteinopathy models identified dihydropyrimidine-thiones (DHPM-thiones) that selectively rescued the toxicity caused by β-amyloid (Aβ), the peptide implicated in Alzheimer’s disease. Rescue of Aβ toxicity by DHPM-thiones occurred through a metal-dependent mechanism of action. The bioactivity was distinct, however, from that of the 8-hydroxyquinoline clioquinol (CQ). These structurally dissimilar compounds strongly synergized at concentrations otherwise not competent to reduce toxicity. Cotreatment ameliorated Aβ toxicity by reducing Aβ levels and restoring functional vesicle trafficking. Notably, these low doses significantly reduced deleterious off-target effects caused by CQ on mitochondria at higher concentrations. Both single and combinatorial treatments also reduced death of neurons expressing Aβ in a nematode, indicating that DHPM-thiones target a conserved protective mechanism. Furthermore, this conserved activity suggests that expression of the Aβ peptide causes similar cellular pathologies from yeast to neurons. Our identification of a new cytoprotective scaffold that requires metal-binding underscores the critical role of metal phenomenology in mediating Aβ toxicity. Additionally, our findings demonstrate the valuable potential of synergistic compounds to enhance on-target activities, while mitigating deleterious off-target effects. The identification and prosecution of synergistic compounds could prove useful for developing AD therapeutics where combination therapies may be required to antagonize diverse pathologies.D.F.T was funded by NRSA Fellowship NIH 5F32NS061419. D.F.T. and S.L. were supported by WIBR funds in support of research on Regenerative Disease, the Picower/JPB Foundation, and the Edward N. and Della L. Thome Foundation. G.A.C. and S.L. were funded by a Howard Hughes Medical Institute (HHMI) Collaborative Innovation Award. L.E.B., R.T., and S.E.S. were funded by NIH GM086180, NIH GM067041, and NIH GM111625. (5F32NS061419 - NRSA Fellowship NIH; WIBR funds in support of research on Regenerative Disease; Picower/JPB Foundation; Edward N. and Della L. Thome Foundation; Howard Hughes Medical Institute (HHMI) Collaborative Innovation Award; GM086180 - NIH; NIH GM067041 - NIH; NIH GM111625 - NIH)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705239/Accepted manuscrip
Functional consequences of structural alterations to the isoprenylated yeast mating pheromone a-factor
In the course of its biosynthesis, secretion, and biological action, the isoprenylated mating pheromone of Saccharomyces cerevisiae, a-factor, interacts with representative proteins of several biologically significant protein families. The a-factor is posttranslationally modified by the enzyme famesyl transferase, exported by a mechanism requiring the action of a yeast homolog of the mammalian multidrug resistance Pglycoprotein, and induces mating via interaction with a protein that shares homology to the G protein-coupled family of receptors. The main objective of this research was to establish and employ a system for the analysis of the structure-function relationships involving a-factor as it serves as either a substrate or ligand for its cellular target proteins. An overview of the literature, as it is related to this work, is presented in Part I of this dissertation. Part II of this dissertation outlines experimental procedures developed in order to establish a system for structure-function relationship studies on a-factor. This entailed the use of oligonucleotide-directed site-specific mutagenesis to introduce precise genetic mutations within the MFa1 gene, encoding a-factor, coupled with a physiological assay for pheromone bioactivity to discern the consequences of such alterations. These experiments led to the characterization of two specific mutations which blocked the production of a-factor in vivo. Part III of this dissertation describes an analysis of the biological consequences of altering the isoprene targeting motif within a-factor to code for posttranslational modification with a geranyl, geranyl isoprene group instead of the native farnesyl lipid. This study demonstrated that differential isoprenylation of a-factor with either farnesyl or geranyl, geranyl results in a secreted and bioactive peptide hormone. Furthermore, biochemical analysis of the peptide pheromones produced by yeast overexpressing a-factor containing a specific geranyl, geranyl targeting sequence indicated that cross-prenylation of such an a-factor substrate peptide with either isoprene can occur in vivo. Parts IV and V of this dissertation summarize the results obtained from an investigation into the bioactivity of a-factor peptides that contain amino acid substitutions or truncations. Specifically, Part IV discusses the identification of an a-factor analog which exhibits a stereospecific superactivity. In two separate bioassays, the [D-Ala5] a-factor was found to have biological activity higher than both a-factor and a [L-Ala5] a-factor analog. Part V reports the results of activity analyses on synthetic a-factor analogs containing truncations at the N-terminus of the peptide. In addition, a physiological screen was employed to identify non-active a-factor peptides selected from yeast expressing a pool of a-factor genes that were randomly mutated within the mature portion of the peptide. DNA sequence analysis of the genes encoding the selected peptides revealed amino acid substitutions predominantly at specific positions within the peptide, implicating these residues in pheromone bioactivity. These combined studies represent an initial inquiry into the relative contribution of specific amino acids to a-factor activity. Finally, Part VI of this dissertation serves to summarize and relate the findings of this work to current studies in progress and acts as a forum for the proposal of future directions of a-factor related research
Calcineurin determines toxic versus beneficial responses to α-synuclein
Calcineurin (CN) is a highly conserved Ca[superscript 2+]–calmodulin (CaM)-dependent phosphatase that senses Ca[superscript 2+] concentrations and transduces that information into cellular responses. Ca[superscript 2+] homeostasis is disrupted by α-synuclein (α-syn), a small lipid binding protein whose misfolding and accumulation is a pathological hallmark of several neurodegenerative diseases. We report that α-syn, from yeast to neurons, leads to sustained highly elevated levels of cytoplasmic Ca[superscript 2+], thereby activating a CaM-CN cascade that engages substrates that result in toxicity. Surprisingly, complete inhibition of CN also results in toxicity. Limiting the availability of CaM shifts CN's spectrum of substrates toward protective pathways. Modulating CN or CN's substrates with highly selective genetic and pharmacological tools (FK506) does the same. FK506 crosses the blood brain barrier, is well tolerated in humans, and is active in neurons and glia. Thus, a tunable response to CN, which has been conserved for a billion years, can be targeted to rebalance the phosphatase’s activities from toxic toward beneficial substrates. These findings have immediate therapeutic implications for synucleinopathies.Jeffry M. and Barbara Picower FoundationJPB FoundationHoward Hughes Medical Institute (Collaborative Innovation Award)Eleanor Schwartz Charitable Foundatio
Compounds from an Unbiased Chemical Screen Reverse Both Er-to-Golgi Trafficking Defects and Mitochondrial Dysfunction in Parkinson's Disease Models
α-Synuclein (α-syn) is a small lipid-binding protein involved in vesicle trafficking whose function is poorly characterized. It is of great interest to human biology and medicine because α-syn dysfunction is associated with several neurodegenerative disorders, including Parkinson’s disease (PD). We previously created a yeast model of α-syn pathobiology, which established vesicle trafficking as a process that is particularly sensitive to α-syn expression. We also uncovered a core group of proteins with diverse activities related to α-syn toxicity that is conserved from yeast to mammalian neurons. Here, we report that a yeast strain expressing a somewhat higher level of α-syn also exhibits strong defects in mitochondrial function. Unlike our previous strain, genetic suppression of endoplasmic reticulum (ER)-to-Golgi trafficking alone does not suppress α-syn toxicity in this strain. In an effort to identify individual compounds that could simultaneously rescue these apparently disparate pathological effects of α-syn, we screened a library of 115,000 compounds. We identified a class of small molecules that reduced α-syn toxicity at micromolar concentrations in this higher toxicity strain. These compounds reduced the formation of α-syn foci, re-established ER-to-Golgi trafficking and ameliorated α-syn-mediated damage to mitochondria. They also corrected the toxicity of α-syn in nematode neurons and in primary rat neuronal midbrain cultures. Remarkably, the compounds also protected neurons against rotenone-induced toxicity, which has been used to model the mitochondrial defects associated with PD in humans. That single compounds are capable of rescuing the diverse toxicities of α-syn in yeast and neurons suggests that they are acting on deeply rooted biological processes that connect these toxicities and have been conserved for a billion years of eukaryotic evolution. Thus, it seems possible to develop novel therapeutic strategies to simultaneously target the multiple pathological features of PD.MGH/MIT Morris Udall Center of Excellence in Parkinson Disease Research (NS038372)Michael J. Fox Foundation for Parkinson's ResearchHoward Hughes Medical InstituteUnited States. National Institutes of Health (NS049221)American Parkinson Disease Association, Inc
Recommended from our members
TorsinA participates in endoplasmic reticulum-associated degradation
TorsinA is an ATPase located within the lumen of the endoplasmic reticulum and nuclear envelope, with a mutant form causing early onset torsion dystonia (DYT1). Here we report a new function for torsinA in endoplasmic reticulum-associated degradation (ERAD). Retro-translocation and proteosomal degradation of a mutant cystic fibrosis transmembrane conductance regulator was inhibited by downregulation of torsinA or overexpression of mutant torsinA, and facilitated by increased torsinA. Retro-translocation of cholera toxin was also decreased by downregulation of torsinA. TorsinA associates with proteins implicated in ERAD, including Derlin-1, VIMP, and p97. Further, torsinA reduces endoplasmic reticulum stress in nematodes overexpressing , and fibroblasts from DYT1 dystonia patients are more sensitive than controls to endoplasmic reticulum stress and less able to degrade mutant CFTR. Therefore, compromised ERAD function in the cells of DYT1 patients may increase sensitivity to endoplasmic reticulum stress with consequent alterations in neuronal function contributing to the disease state
Protective role of DNJ-27/ERdj5 in Caenorhabditis elegans models of human neurodegenerative diseases
Aims: Cells have developed quality control systems for protection against proteotoxicity. Misfolded and aggregation-prone proteins, which are behind the initiation and progression of many neurodegenerative diseases (ND), are known to challenge the proteostasis network of the cells. We aimed to explore the role of DNJ-27/ERdj5, an endoplasmic reticulum (ER)-resident thioredoxin protein required as a disulfide reductase for the degradation of misfolded proteins, in well-established Caenorhabditis elegans models of Alzheimer, Parkinson and Huntington diseases. Results: We demonstrate that DNJ-27 is an ER luminal protein and that its expression is induced upon ER stress via IRE-1/XBP-1. When dnj-27 expression is downregulated by RNA interference we find an increase in the aggregation and associated pathological phenotypes (paralysis and motility impairment) caused by human β-amyloid peptide (Aβ), α-synuclein (α-syn) and polyglutamine (polyQ) proteins. In turn, DNJ-27 overexpression ameliorates these deleterious phenotypes. Surprisingly, despite being an ER-resident protein, we show that dnj-27 downregulation alters cytoplasmic protein homeostasis and causes mitochondrial fragmentation. We further demonstrate that DNJ-27 overexpression substantially protects against the mitochondrial fragmentation caused by human Aβ and α-syn peptides in these worm models. Innovation: We identify C. elegans dnj-27 as a novel protective gene for the toxicity associated with the expression of human Aβ, α-syn and polyQ proteins, implying a protective role of ERdj5 in Alzheimer, Parkinson and Huntington diseases. Conclusion: Our data support a scenario where the levels of DNJ-27/ERdj5 in the ER impact cytoplasmic protein homeostasis and the integrity of the mitochondrial network which might underlie its protective effects in models of proteotoxicity associated to human ND
Hall Normalization Constants for the Bures Volumes of the n-State Quantum Systems
We report the results of certain integrations of quantum-theoretic interest,
relying, in this regard, upon recently developed parameterizations of Boya et
al of the n x n density matrices, in terms of squared components of the unit
(n-1)-sphere and the n x n unitary matrices. Firstly, we express the normalized
volume elements of the Bures (minimal monotone) metric for n = 2 and 3,
obtaining thereby "Bures prior probability distributions" over the two- and
three-state systems. Then, as an essential first step in extending these
results to n > 3, we determine that the "Hall normalization constant" (C_{n})
for the marginal Bures prior probability distribution over the
(n-1)-dimensional simplex of the n eigenvalues of the n x n density matrices
is, for n = 4, equal to 71680/pi^2. Since we also find that C_{3} = 35/pi, it
follows that C_{4} is simply equal to 2^{11} C_{3}/pi. (C_{2} itself is known
to equal 2/pi.) The constant C_{5} is also found. It too is associated with a
remarkably simple decompositon, involving the product of the eight consecutive
prime numbers from 2 to 23.
We also preliminarily investigate several cases, n > 5, with the use of
quasi-Monte Carlo integration. We hope that the various analyses reported will
prove useful in deriving a general formula (which evidence suggests will
involve the Bernoulli numbers) for the Hall normalization constant for
arbitrary n. This would have diverse applications, including quantum inference
and universal quantum coding.Comment: 14 pages, LaTeX, 6 postscript figures. Revised version to appear in
J. Phys. A. We make a few slight changes from the previous version, but also
add a subsection (III G) in which several variations of the basic problem are
newly studied. Rather strong evidence is adduced that the Hall constants are
related to partial sums of denominators of the even-indexed Bernoulli
numbers, although a general formula is still lackin
Vacuolar protein sorting protein 41 (VPS41) at an intersection of endosomal traffic in neurodegenerative disease
Ubiquitin conjugating enzymes participate in polyglutamine protein aggregation
Background: Protein aggregation is a hallmark of several neurodegenerative diseases including Huntington's disease and Parkinson's disease. Proteins containing long, homopolymeric stretches of glutamine are especially prone to form aggregates. It has long been known that the small protein modifier, ubiquitin, localizes to these aggregates. In this report, nematode and cell culture models for polyglutamine aggregation are used to investigate the role of the ubiquitin pathway in protein aggregation. Results: Ubiquitin conjugating enzymes (Ubc's) were identified that affect polyglutamine aggregates in C. elegans. Specifically, RNAi knockdown of ubc-2 or ubc-22 causes a significant increase in the size of aggregates as well as a reduction in aggregate number. In contrast, RNAi of ubc-1, ubc-13, or uev-1 leads to a reduction of aggregate size and eliminates ubiquitin and proteasome localization to aggregates. In cultured human cells, shRNA knockdown of human homologs of these Ubc's (Ube2A, UbcH5b, and E2- 25K) causes similar effects indicating a conserved role for ubiquitination in polyglutamine protein aggregation. Conclusion: Results of knockdown of different Ubc enzymes indicate that at least two different and opposing ubiquitination events occur during polyglutamine aggregation. The loss of ubiquitin localization after ubc-1, ubc-13, or uev-1 knockdown suggests that these enzymes might be directly involved in ubiquitination of aggregating proteins
Identifying transgene insertions in Caenorhabditis elegans genomes with Oxford Nanopore sequencing.
Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains of Caenorhabditis elegans commonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and human α-synuclein), a model for Parkinson's research. After scaffolding to the reference, the final assembled sequences were ∼102 Mb with N50s of 17.9 Mb and 18.0 Mb, respectively, and L90s of six contiguous sequences, representing chromosome-level assemblies. Each of the assembled sequences contained more than 99.2% of the Nematoda BUSCO genes found in the C. elegans reference and 99.5% of the annotated C. elegans reference protein-coding genes. We identified the locations of the transgene insertions and confirmed that all transgene sequences were inserted in intergenic regions, leaving the organismal gene content intact. The transgenic C. elegans genomes presented here will be a valuable resource for Parkinson's research as well as other neurodegenerative diseases. Our work demonstrates that long-read sequencing is a fast, cost-effective way to assemble genome sequences and characterize mutant lines and strains
- …
