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Alpha synuclein (α-syn) is a small lipid binding protein involved in vesicle 

trafficking whose function is poorly characterized.  It is of great interest to human 

biology and medicine because α-syn dysfunction is associated with several 

neurodegenerative disorders including Parkinson Disease (PD).  We previously 

created a yeast model of α-syn pathobiology, which established vesicle trafficking as a 

process that was particularly sensitive to α-syn expression.  We also uncovered a core 

of proteins with diverse activities related to α-syn toxicity conserved from yeast to 

mammalian neurons.  Here we report that a yeast strain expressing a somewhat 

higher level of α-syn also exhibits strong defects in mitochondrial function.  Unlike 

our earlier strain, genetic suppression of ER-to-Golgi trafficking alone does not 

suppress α-syn toxicity in this strain.  In an effort to identify individual compounds 

that could simultaneously rescue these apparently disparate pathologic effects of α-

syn, we screened a library of 115,000 compounds.  Indeed, we identified a class of 

small molecules that reduced α-syn toxicity at micromolar concentrations in this 

higher toxicity strain.  These compounds reduced the formation of α-syn foci, re-

established endoplasmic reticulum (ER)-to-Golgi trafficking, and ameliorated α-syn 

mediated damage to mitochondria.  They also corrected the toxicity of α-syn in 

nematode neurons and in primary rat neuronal midbrain cultures.  Remarkably the 

compounds also protected neurons against rotenone-induced toxicity, which has been 

used to model the mitochondrial defects associated with PD in humans.  That single 

compounds are capable of rescuing the diverse toxicities of α-syn in yeast and 

neurons suggests that they are acting on deeply rooted biological processes that 

connect these toxicities and have been conserved for a billion years of eukaryotic 

evolution.  Thus, it seems possible to develop novel therapeutic strategies to 

simultaneously target the multiple pathological features of PD.   

  

α-Synuclein (α-syn) dysfunction has a well-established association with several 

neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies 

(DLB), and Multiple Systems Atrophy (MSA).  PD is characterized by the degeneration of 

dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and other 
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brainstem and cortical nuclei (Braak et al., 2003); DLB by widespread cortical neuronal 

loss; and MSA by neuronal loss in the brainstem, cerebral cortex, and cerebellum.  Both 

PD and DLB feature the formation of Lewy bodies (LBs) and Lewy Neurites (LNs) which 

are proteinaceous cytoplasmic aggregates composed of α-synuclein (α-syn) (Spillantini et 

al., 1997).  In MSA, on the other hand, α-syn accumulates as morphologically distinct 

cytoplasmic inclusions in both neurons and glia (Spillantini et al., 1998).  Both missense 

mutations and amplification of α-syn (Polymeropoulos et al., 1997; Kruger et al., 1998; 

Singleton et al., 2003; Ibanez et al., 2009) are linked to dominantly inherited forms of PD 

and DLB and recent genome-wide-analyses have linked α-syn to idiopathic PD, DLB, and 

MSA (Farrer et al., 2001; Kay et al., 2008; Scholz et al., 2009). Thus, it is becoming 

increasingly clear that α-syn dysfunction is central to the pathogenesis of these diseases. 

α-Syn is a small 14.5 kDa protein ubiquitously expressed in the brain capable of 

associating with membranes (Jo et al., 2000; Cole et al., 2002).  Its function remains poorly 

understood.  When not bound to lipids α-syn is natively unfolded and is prone to forming 

toxic oligomers and higher ordered aggregates (Cole et al., 2002). These simple 

biophysical properties make α-syn an attractive subject for study in yeast, where the 

protein homeostasis machinery, vesicle-trafficking pathways, and even lipid metabolism 

pathways are highly conserved (Outeiro and Lindquist, 2003; Cooper et al., 2006; Gitler et 

al., 2008).   

Yeast has most well-characterized eukaryotic genome and is amenable to rapid 

genetic interrogation.  To take advantage of yeast genetics in dissecting the biology of α-

syn, we placed α-syn under the control of the galactose inducible promoter.  This allows 

synchronous induction of the transgene in all cells in the culture upon a switching the 

carbon source from raffinose to galactose media.  By varying the copy number and 

integration loci of α-syn we found an unusually strong dose-dependence between α-syn 

expression levels and toxicity (Cooper et al., 2006; Gitler et al., 2008), highly reminiscent 

of the extreme dosage sensitivity of α-syn observed with certain dominantly-inherited 

forms of PD (Singleton et al., 2003; Ibanez et al., 2009).  In this model, α-syn toxicity 

causes lipid droplet accumulation (Outeiro and Lindquist, 2003), impairs proteasome-

mediated protein degradation (Chen et al., 2005; Sharma et al., 2006), and elicits vesicle 

trafficking defects (Outeiro and Lindquist, 2003; Soper et al., 2008) with specific ER-to-
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Golgi blockade (Cooper et al., 2006; Gitler et al., 2008).  All of these phenotypes have 

been observed in neuronal models and implicated in the pathogenesis of PD.  Specifically, 

proteasomal impairment results in increased levels of α-syn in patient-derived fibroblasts 

(Hoepken et al., 2008) and the formation of fibrillar α-syn inclusions in primary rat 

neurons (Rideout et al., 2004);  lipid droplets can promote the oligomerization of α-syn 

(Cole et al., 2002) and are associated with Lewy bodies in PD brains (Gai et al., 2000), and 

deletion of α-syn results in depletion of presynaptic vesicle pools (Abeliovich et al., 2000; 

Murphy et al., 2000; Cabin et al., 2002).   

The extreme dosage sensitivity of α-syn allowed us to construct a modestly toxic α-

syn strain (IntTox) which enabled a high-throughput unbiased genetic screen to identify 

both enhancers and suppressors of α-syn toxicity (Cooper et al., 2006; Yeger-Lotem et al., 

2009).  This screen identified genes involved in ER-to-Golgi trafficking (Cooper et al., 

2006; Gitler et al., 2008), nitrosative stress, oxidative stress, and manganese transport 

(Yeger-Lotem et al., 2009).  Human homologues of eight of these yeast genes (including 

PARK9/ATP13A2, a lysosomal ATPase; PLK2, a Polo-like kinase; and SYVN1, an E3 

ubiquitin ligase) were tested in other models of PD and seven were confirmed to modify α-

syn toxicity in neurons (Cooper et al., 2006; Gitler et al., 2008; Gitler et al., 2009; Yeger-

Lotem et al., 2009).  Thus the yeast work revealed that α-syn is part of a diverse genetic 

interactome that is conserved from yeast to mammals.  Further, we identified YPK9, the 

yeast homolog of PARK9/ATP13A2, as a suppressor of α-syn toxicity in our genetic screen.  

Mutations in this gene are associated with autosomal-recessive Parkinsonism with 

dementia and pallidopyramidal degeneration (Kufor-Rakeb syndrome; OMIM 606693), 

but there had previously been no link between this disease and α-syn.  In yeast, YPK9 

helped to alleviate manganese toxicity and restored α-syn localization to the membrane. 

The disease-associated mutations eliminated these functions when introduced into the 

Ypk9 protein. These results establish that the core biological processes affected by α-syn 

have been conserved across eukaryotic evolution and demonstrate the utility of yeast in 

investigating its biology and pathobiology. 

Here we investigated a yeast strain that expresses higher levels of α-syn (HiTox) 

than the strain used in our earlier genetic screens (IntTox) (Cooper et al., 2006; Gitler et 

al., 2009; Yeger-Lotem et al., 2009).  In various experiments using ELISA assays, the 
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expression level of α-syn in HiTox cells was 1.4 to 2.5 fold of the α-syn expression level in 

the IntTox cells.  One striking difference between these two strains is that most of the 

genetic modifiers which strongly suppress α-syn toxicity in the IntTox strain do not 

effectively suppress toxicity in the HiTox strain on their own (Gitler et al., 2009; Kritzer et 

al., 2009).  Instead, co-expression of two suppressors from diverse pathways is required to 

restore viability in the HiTox strain.  This suggests that multiple pathways are being 

affected by α-syn in this strain.  We turned to transcriptional profiling to elucidate these 

complex biological responses to α-syn and performed a high throughput chemical screen to 

determine if it was possible to discover individual compounds that could rescue diverse 

aspects of α-syn toxicity.   

 

RESULTS 

Transcriptional profiling reveals mitochondrial stress as an early signature of α-syn 

toxicity 

 We compared the transcriptional profile of HiTox cells with that of cells 

transformed with the vector alone (Vector) and with cells expressing a non-toxic low-

expression level of α-syn (NoTox) (Fig. 1A, Tables S1 and S2).  At non-toxic levels, α-

syn expression elicited only a minimal transcriptional response that was slightly enriched 

for genes regulating carbon metabolism (Fig. 1B and Table S1).  The HiTox α-syn strain, 

however, elicited a marked transcriptional response as early as two hours after induction, 

before any dying cells can be detected (Fig. 1A).  This response markedly intensified after 

four hours of induction (Fig. 1A, Table S2) when only a few cells in the culture were 

starting to die (Cooper et al., 2006; Gitler et al., 2008) (Fig. S1).     

Our analysis, using the gene ontology (GO) annotation of differentially regulated 

genes (Hong et al., 2008; Barrell et al., 2009) showed global down-regulation in the 

expression of ribosomal genes (28% [% of all genes with transcriptional changes], p<10-30) 

(Fig. 1B, Table S2).  This was one of the earliest changes detected.  However, it is a 

common signature of just about any stressful condition in yeast (Gasch et al., 2000) and is 

not particularly informative regarding α-syn toxicity.   

Other transcriptional changes were more specific to α-syn toxicity.  At the earliest 

time point, just two hours after induction, we found marked decreases in transcripts 
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involved in the function and maintenance of the mitochondria (Fig. 1B).  After two 

additional hours of induction, the down-regulation of mitochondrial and respiratory 

transcripts was much more pronounced (60%, p<10-44) (Fig. 1B).  This finding was 

particularly striking given that only two mitochondrial genes were identified as modifiers 

of the α-syn IntTox strain (Cooper et al., 2006; Yeger-Lotem et al., 2009).  One was the 

suppressor Hap4, a transcriptional activator of respiratory genes (De Winde and Grivell, 

1995).  The other, Mks1, enhanced α-syn toxicity.  Mks1 is a negative regulator of the 

retrograde signaling pathway. This pathway senses mitochondrial dysfunction and evokes 

a nuclear transcriptional response (Liu et al., 2003).  Hence in the IntTox strain, this 

pathway appears to be acting to alleviate mitochondrial dysfunction caused by α-syn.  

Presumably, in the HiTox strain, the capacity of this pathway to counteract the toxicity of 

α-syn is overwhelmed. 

In addition to this alteration in mitochondrial transcripts, we found that transcripts 

for genes with oxidoreductase activities were increased at 2 and 4 hours of induction (13%, 

p<10-9) (Fig. 1B).  This set of oxidoreductase genes was previously reported to increase in 

response to oxidative, osmotic, or aldehyde stress (Attfield, 1997).  Together with the 

mitochondrial signature, we hypothesize that mitochondrial dysfunction is associated with 

oxidative stress in the HiTox strain. 

 

α-Syn toxicity results in mitochondrial dysfunction and the generation of reactive oxygen 

species 

To investigate the implications of these transcriptional alterations, we turned to 

thin-section ultrastructural electron microscopy (EM) to examine mitochondrial 

morphology.  As we have previously reported, the IntTox strain exhibited a striking 

accumulation and clustering of vesicles, both at the periphery and interior of the cells 

(Gitler et al., 2008), and accumulation of lipid droplets in the cytoplasm (Outeiro and 

Lindquist, 2003).  These changes also occurred in the HiTox strain.  But in addition we 

observed hypertrophy of the ER with invagination of the ER membranes and 

mislocalization from the periphery of the cell to interior (Fig. 2A, c, inset).   

Mitochondria in the HiTox α-syn cells were also markedly abnormal.  Healthy 

mitochondria are typically compact with stacked, hyperintense mitochondrial membranes 
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(Fig. 2A, a and b) (Vander Heiden et al., 1997).  Instead of retaining their typical ribbon-

like architecture, the mitochondria of HiTox cells were swollen and circular with 

isointense electron-density with respect to the cytoplasm (Fig. 2A, c). These morphological 

changes correlate closely with loss of mitochondrial membrane potential and are indicative 

of dysfunctional mitochondria (Vander Heiden et al., 1997).  Mitochondrial changes were 

only rarely observed in the IntTox strain (data not shown) (Gitler et al., 2008). 

Given the relationship between mitochondrial dysfunction and reactive oxygen 

species (ROS) in PD (Foley and Riederer, 2000; Abou-Sleiman et al., 2006), we assayed 

for the production of ROS with 5-(and-6)-chloromethyl-2´, 7´-dichlorodihydrofluorescein 

diacetate (CM-H2DCFDA), a cell permeable compound that fluoresces green upon 

oxidation by specific ROS (peroxynitrite, OH•, and H2O2).  As expected, ROS was 

detected in fewer than 3% of vector, NoTox, or IntTox α-syn cells (Fig. 2B and data not 

shown).  HiTox α-syn cells, however, exhibited a marked amount of ROS with over 30% 

of cells showing fluorescence with treated with CM-H2DCFDA (Fig. 2B).  Together with 

the ultrastructural mitochondrial changes, the generation of ROS suggests that high-levels 

of α-syn elicit global mitochondrial dysfunction. 

 

Mitochondrial toxicity is not associated with mitochondrial localization of α-syn 

Recent studies have suggested that α-syn may localize to mitochondria (Cole et al., 

2008; Devi et al., 2008; Parihar et al., 2008).  In our previous studies using immunogold 

electron microscopy, we did not find localization of α-syn to mitochondria in yeast (Gitler 

et al., 2008).  However, these studies had employed the IntTox strain which has much less 

mitochondrial damage.  Therefore, we revisited this issue asking whether, in the HiTox 

yeast strain, α-syn elicited mitochondrial damage by mislocalizing to the mitochondria.  

We employed a more quantitative method, differential centrifugation, to isolate distinct 

cellular compartments.  This technique allows for the detection of even small quantities of 

α-syn.   The purity of individual fractions was confirmed with compartment-specific 

markers (protein disulfide isomerase for ER, porin for mitochondria, alkaline phosphatase 

for vacuole, and phosphoglycerate kinase for cytosol; Fig. 2C).   

We then probed for α-syn in each compartment and found that less than 0.2% of 

total α-syn was present in the mitochondrial fraction (Fig. 2C); most of the α-syn was 
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found in the soluble fraction with a smaller amount separating with the ER and vacuole 

(Fig 2C).  The small amount of α-syn identified in the mitochondrial fraction likely 

represents minor contamination from other cellular compartments (note for example a 

similar level of reactivity with antibodies against alkaline phosphatase, a vacuolar marker, 

was also observed; Fig. 2C).  Importantly, on long exposure, there was no increase in the 

small fraction of α-syn in the mitochondrial fraction in HiTox cells relative to cells 

expressing low, completely non-toxic levels of α-syn.  Thus mitochondrial dysfunction 

elicited by α-syn is not due to specific mislocalization to mitochondria through a cryptic 

signaling sequence.  Rather, it is the perturbation of other cellular pathways impinged on 

by α-syn that leads to mitochondrial dysfunction and the generation of reactive free 

radicals.    

 

A high throughput chemical screen identifies strong suppressors of α-syn toxicity.   

We next used this HiTox α-syn strain in a high-throughput chemical screen to 

identify single agents that might be capable of rescuing the robust toxicity of this strain.  

We hoped that identifying such a compound would uncover deeply-rooted aspects of α-syn 

biology linking the disparate pathologic phenotypes associated with toxicity.  The multiple 

toxic phenotypes of this strain also created such a high level of stringency that we 

anticipated recovering only a small number of compounds that could reproducibly suppress 

α-syn toxicity.  To score positive in the screen, the compounds needed to be able to 1) 

enter cells, 2) avoid clearance by core metabolic pathways, 3) alleviate α-syn toxicity 

without causing toxicity on their own at the screening concentration (Fleming et al., 2008) 

and 4) protect against at least two different features of α-syn toxicity within the HiTox 

cells (Gitler et al., 2009).   

A library of 115,000 small compounds was screened at a concentration of 17 μg/ml 

(~ 15 μM) for the ability to ameliorate HiTox α-syn toxicity.  Our initial compound hits 

were subsequently tested at lower concentrations (0.1 – 10 μM) to identify the most potent 

molecules capable of rescuing the HiTox α-syn cells (data not shown).  Although none of 

the compounds completely restored normal growth, a few restored cell growth to ~50% of 

the density of wild-type cells after 48 hours of growth in galactose media (data not shown).    

Four 1,2,3,4-tetrahydroquinolinones denoted (1), (2), (3), and (4) (Fig. 3A, B) satisfied 
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these stringent criteria: these compounds were effective at low micromolar concentrations; 

exhibited significant dose-dependent rescue of growth; and were not toxic to wildtype cells 

(Fig. S2).  By quantifying the growth rate between 5 and 10 hours, we determined that 

compound (3) was the most potent at the lowest concentrations, compounds (2) and (4) 

were equally potent at higher concentrations, and that compound (1) exhibited only weak 

protective activity at all concentrations tested (Fig. 3C).  These compounds also 

demonstrated robust protective activity in a flow cytometric assay for cell death (Fig. 3D), 

with the most effective compound (compound (3), Fig. 3C) reducing α-syn-induced cell 

death from ~25% to 10% after six hours of α-syn expression (Fig. 3D).  

We next asked if the compounds simply reduced the expression of α-syn from the 

galactose promoter. By western blotting, there was no measurable reduction on the amount 

of α-syn (data not shown).  However, the strong dosage sensitivity of α-syn raised the 

possibility that even a slight alteration of expression could potentially alter the toxic 

phenotype.  To further exclude potential transcriptional or promoter effects, we examined 

the efficacy of the compounds against α-syn toxicity when gene expression was controlled 

using an estradiol-inducible transcriptional trans-activator (Louvion et al., 1993).  Under 

these conditions, the compounds were still protective against α-syn toxicity thereby 

excluding the possibility that suppression was simply the result of reduced induction from 

the galactose promoter (Fig. S3).   

We also tested the compounds in a yeast model for Huntington disease (Duennwald 

et al., 2006) to determine whether these compounds were general modifiers of cellular 

toxicity or if they addressed specific pathologic processes unique to α-syn.  None of the 

compounds restored growth in yeast expressing a toxic huntingtin fragment bearing a 

polyglutamine expansion (Fig. S4).  Thus the compounds are not simply generalized 

modulators of cell stress.   

To address whether the compounds altered the oligomerization properties of α-syn, 

we examined the compounds’ ability to alter the fibrillization of α-syn using a thioflavin-T 

fluorescence assay.  Monomeric wildtype α-syn was incubated at 25ºC with slight agitation 

in the presence of thioflavin-T which emits at 490 nm only when bound to amyloid fibrils.  

We found that the compounds had no effect on the rate of conformational transitions of α-
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syn from monomer to amyloid fibers (Fig. S5), suggesting that they do not interact directly 

with α-syn.   

We also identified two commercially available, structurally related 1,2,3,4-

tetrahydroquinolinones that differed from the original compounds only by the functional 

groups appended to the phenyl ring (Fig. 3A; compounds (5) and (6)).  These related 

compounds did not rescue the growth of HiTox α-syn cells at any concentration tested 

(Figs 3A, C, D and S3).    

   

Compounds identified in the yeast screen also rescue α-syn-mediated dopaminergic 

neuron loss in a nematode model of PD.   

Before pursuing detailed investigations characterizing the compounds, we sought to 

determine whether they were also effective in neuronal models of PD.  First, we tested a C. 

elegans model expressing wild-type α-syn in DA neurons (Cao et al., 2005; Cooper et al., 

2006).  In this model, dopaminergic neurons remain in their proper neuroanatomical 

context.  Because development is highly stereotyped in nematodes, wild-type animals 

always have exactly the same number of DA neurons.  Directed expression of α-syn by the 

dopamine transporter promoter (Pdat-1) results in a highly reproducible age-dependent loss 

of DA neurons in ~50% of animals within 172 hours of age (neurons were scored for both 

intact cell bodies and preservation of neuritic processes) (Cao et al., 2005).   

As free-living soil organisms, nematodes have thick cuticles and strong drug efflux 

pumps which necessitated that we first test their ability to tolerate 1% DMSO, the vehicle 

in which our compounds were administered.  Under these conditions, neither the 

compounds nor 1% DMSO itself, exerted any toxic effect on wildtype worms not 

expressing α-syn.  Newly hatched embryos expressing α-syn were able to tolerate 1% 

DMSO for up to 24 hours and two-day-old adult worms tolerated 1% DMSO for 8 hours 

with no additional neuronal loss (data not shown).  Remarkably, the exposure of newly 

hatched embryos to ~ 15 μM of compounds (1), (3), and (4) in 1 % DMSO for just 24 

hours achieved a substantial rescue of α-syn toxicity.  After aging worms for an additional 

148 hours after removal of the compounds, the percentage of worms with a full 

complement of neurons was increased to 70% from 50% (Fig. 4A & C).  Moreover, two-

day-old adult worms that were treated with compound (1) for only 8 hours also retained 
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more DA neurons and dendritic connections (Fig. 4B).  Subtler but statistically significant 

neuroprotective effects were observed with compounds (2), (3) and (4), but not (5) and (6).  

It is remarkable that brief treatment of adult worms with these compounds was 

neuroprotective well after the onset of α-syn expression, revealing that it is possible to 

arrest cell death even after the onset of toxicity. 

 

Rescue of α-syn-mediated dopaminergic neurotoxicity in mammalian cells.   

We next sought to test the efficacy of these compounds in a mammalian model of 

PD.  Stage 17 embryos were harvested from pregnant rats and their midbrains were 

carefully dissected, gently dissociated, and cultured in vitro for seven days.  They were 

then transduced for 72 hours with a lentivirus encoding a mutant form of α-syn that is 

associated with autosomal-dominant PD (A53T).  This well-established PD model (Liu et 

al., 2008a), while labor intensive, provides a robust and more reproducible measure of 

toxicity than we have been able to attain with any stable cell lines.  This may be because 

the cultures recapitulate natural interactions between glia and neurons and/or because the 

cell lines have lost apoptotic mechanisms during immortalization and transformation.  An 

additional benefit of this system is that lentiviral transfection is not restricted to a particular 

cell type and thus allows for the assessment of the preferential toxicity and rescue of DA 

neurons relative to other neurons in the culture.  

Transduction of rat midbrain cultures with lentivirus encoding α-syn-A53T elicited 

a reduction in the total number of neurons (MAP2-positive neurons) and GABAergic 

neurons (GABA-positive neurons) within 96 hours (Liu et al., 2008a) (Fig. 4D).  Notably, 

these neurons featured marked retraction of their processes (Fig. 4D).  Although few 

tyrosine hydroxylase (TH)-positive neurons are present in individual microscopic fields, 

quantification of many fields revealed that the reduction in their numbers of these neurons 

was even more dramatic (Fig. 4E) (Cooper et al., 2006; Liu et al., 2008a).  Remarkably, 

treatment with (1), (2), and (3), but not with vehicle, yielded a robust increase in the 

relative number of TH+ positive neurons (Fig. 4E), and substantially prevented the 

aberrant morphologies of the surviving neurons (Fig. 4D).  Treated neurons, including TH-

positive neurons, retained their complex branched dendritic arborization (Fig. 4D).  

Intriguingly, while compound (4) was not effective, compound (6), which had been 
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inactive in both yeast and C. elegans, exhibited a protective effect in this neuronal assay 

(Fig. 4E).   

 

Structure-activity relationships uncover only minor differences among models in three 

different organisms 

It is important to note that compounds (3), (4) and (6) are structurally very similar 

and differ only in the functional groups appended to the phenyl group (Fig. 3A).  This 

structural similarity suggested that the compounds might interact with the same target.  

Indeed, when we performed competition assays in HiTox yeast cells, by mixing the most 

effective compound (3) with increasing concentrations of the yeast-inactive compounds (5) 

or (6), they strongly interfered with rescue by compound (3) (Fig. S2 and data not shown).  

Further, transcriptional analysis of the compounds in yeast revealed that compounds (5) 

and (6) did have some, albeit limited, effects on reversing the transcriptional profile of 

HiTox α-syn (Fig. 1C, see below).  Compounds (5) and (6) must therefore bind to the same 

target as compound (3), but simply do not affect its function appreciably.  Thus, the 

bioactive compounds we identified in the yeast screen must act on a conserved target(s) 

that exhibits only minor differences in SAR over astonishing evolutionary distances. 

  

Chemical suppressors of α-syn toxicity reverse mitochondrial abnormalities, reduce ROS 

production, and restore ER-to-Golgi trafficking. 

Given the diversity of pathologic phenotypes present in the HiTox α-syn cells, we 

asked which were being reversed by these compounds.  Transcriptional profiling of wild-

type yeast cells revealed that the compounds elicited a negligible transcriptional response 

on their own, consistent with our finding that the compounds had no effect on the growth 

or viability of wildtype cells (Table S4).  In HiTox α-syn cells, the active compounds had a 

profound effect on the transcriptional changes due to α-syn toxicity.  Compounds (1) and 

(2) markedly reversed many of the transcriptional changes induced by high levels of α-syn 

(Fig. 1C).  Compound (4) showed a more modest, yet similar effect on the transcriptional 

changes of HiTox cells (Fig. 1C) [correlation between profiles of cells treated with (1) and 

(4), r=0.74); differential findings among several replicates limited statistical analysis of 

transcripts from cells treated with (3)].  In contrast, the yeast inactive compounds (5) and 
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(6) yielded only a partial reduction in the transcriptional changes induced by HiTox α-syn 

(Fig. 1C).  Overall, treatment with (5) or (6) correlated most closely with untreated HiTox 

cells (r>0.86). 

Notably, the reversal in α-syn associated transcriptional changes was incomplete 

[r=0.59 for untreated vs. (1); r=0.54 for untreated vs. (2)].  Specifically, in HiTox cells 

treated with (1) or (2), the differentially regulated genes were still enriched for 

mitochondria-localized proteins (29%, p<10-11), however the magnitude by which the 

expression of these genes changed was reduced in comparison to untreated cells (Fig. 1B 

and C).  Genes involved in transition metal ion homeostasis (6%, p<10-12) that increase in 

response to α-syn remained upregulated.  Overall, the transcriptional profiles of HiTox 

cells treated with compounds revealed broad reductions in ER, mitochondrial, membrane, 

and oxidative stress pathways (Fig. 1C).  Thus the compounds appear to be acting on a 

central core pathway that is either upstream of these pathways, or unites them.   

Next we examined the effects of the compounds on the generation of ROS, ER-to-

Golgi vesicle trafficking, and mitochondrial morphology.  All of the active compounds 

caused a dramatic reduction in the generation of ROS in HiTox α-syn cells (Fig. 2B).  The 

production of ROS in HiTox cells was completely restored to control levels by treatment 

with compound (3) but not with compound (5) (Fig. 2B).  This finding raised the 

possibility that the compounds were cytoprotective by acting as scavengers of free radicals.  

We therefore tested several strong antioxidants for their ability to suppress α-syn toxicity.  

The antioxidants N-acetylcysteine, riboflavin and melatonin all protected against the 

toxicity of hydrogen peroxide to yeast cells (Figs S7-S9).  In contrast, compound (3) did 

not rescue against hydrogen peroxide-induced toxicity (Fig. S7).  None of the antioxidants 

protected against the cellular toxicity of α-syn in yeast (Figs S7-S9).  Similarly these 

antioxidants did not protect against the toxicity of α-syn in the nematode or rat midbrain 

neuronal culture models (Figs S10 and S11) (Liu et al., 2008b).  Thus rescue of toxicity by 

these compounds is not due to simple antioxidant activity. 

ER-to-Golgi vesicle trafficking blockade is a significant component of α-syn 

toxicity in IntTox cells (Cooper et al., 2006) and is effectively rescued by the coexpression 

of Rab GTPases (Cooper et al., 2006; Gitler et al., 2008s06).  This ER-to-Golgi block is 

associated with the mislocalization of α-syn from the plasma membrane to large foci 
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within both IntTox and HiTox cells (Outeiro and Lindquist, 2003; Cooper et al., 2006) but 

not in NoTox cells.  The Rab proteins are largely ineffectual in protecting HiTox cells on 

their own (Gitler et al., 2009).  They do so only when combined with genetic suppressors 

of different functional classes (Gitler et al., 2009; Kritzer et al., 2009).  We found that, 

unlike the Rab proteins, all four bioactive compounds restored α-syn localization to the 

plasma membrane on their own in HiTox cells (Fig. 5A).  

To specifically and quantitatively assay ER-to-Golgi trafficking, we measured the 

compartment-specific modifications acquired by carboxypeptidase Y (CPY) as it traverses 

from the ER to the Golgi to the vacuole.  In healthy wild-type cells, less than 5% of CPY is 

retained in the ER 20 minutes after pulse with radiolabeled CPY (Cooper et al., 2006).  In 

untreated HiTox cells that had been induced for 4.5 hours prior to pulse-labeling, 55% of 

CPY was retained in the ER after the 20 minute chase.  This is similar to the ER-to-Golgi 

trafficking block we previously reported for the IntTox α-syn strain (Cooper et al., 2006).  

HiTox cells treated with vehicle or with the inactive compounds (5) and (6) exhibited a 

similar decrease in CPY trafficking (Fig. 5B).  Remarkably, treatment with compounds (1), 

(2), (3), or (4) restored CPY trafficking to wildtype levels with only 5% retention in the ER 

(Fig. 5B).   

Finally, to confirm the effects of the compounds on these diverse pathways, we 

examined HiTox cells by electron microscopy.  HiTox cells treated with compound (1) – 

(4) still contained some swollen and isointense mitochondria, however, the frequency of 

these mitochondrial abnormalities was reduced (Fig. 5C).  In addition, the active 

compounds largely restored ER localization to the periphery of the cells and reduced the 

size and number of vesicle clusters within HiTox cells (Fig. 5C, a-d).  In contrast, none of 

these abnormalities were reversed upon treatment with either compound (5) or (6) (Fig. 

5C, e & f).  The fact that these compounds restored trafficking of CPY from the ER to 

Golgi in addition to reducing ROS production and restoring mitochondrial morphology 

demonstrates that it is possible to ameliorate several diverse cellular pathologies associated 

with PD with a single chemical agent. 

 

Suppression of rotenone toxicity in mammalian dopaminergic neurons  
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Because the compounds reversed several different pathological phenotypes 

mediated by α-syn in yeast suggested that they might also protect mammalian cells from 

other sources of PD-related damage.  Rotenone, a potent mitochondrial complex I 

inhibitor, is commonly used to elicit mitochondrial dysfunction, oxidative stress, and 

dopaminergic degeneration in mammalian systems.  In cultured cells, it is considered a 

good model of the PD-related damage associated with mitochondrial toxins (Ayala et al., 

2007).   

As expected, exposure of primary rat midbrain cultures to 100 nM rotenone caused 

a robust decrease in the overall number of GABA+, MAP2+ and TH+ neurons.  Rotenone 

also elicited marked morphological changes including retracted neuronal processes and 

shriveled neuronal somata (Fig. 6).  As observed with α-syn-A53T transfection, TH+ 

neurons were lost in greater degree than other neurons (Fig. 6).  Treatment with 

compounds (1) or (4) greatly abrogated the toxicity of rotenone in a dose-dependent 

manner and restored normal neuronal architecture (Figs 6 and S6).  Compounds (3) and (5) 

also showed a trend towards neuroprotection, though results with (3) did not reach 

statistical significance (Fig. S6).    

As previously reported, over-expression of Rab1 suppresses α-syn toxicity in yeast 

(the IntTox strain) by restoring ER-to-Golgi transport.  It also rescues α-syn toxicity in C. 

elegans, Drosophila melanogaster, and rat neuronal cultures (Cooper et al., 2006).  

However, Rab1 did not reverse the toxicity of rotenone (Fig. S6).  Thus, it appears that 

mitochondrial dysfunction is not a direct consequence of ER-to-Golgi trafficking defects 

alone, but of some other, closely related pathway affected by α-syn.  The compounds must 

be acting on a target proximal to both pathways to be able to protect against high levels of 

α-syn toxicity in yeast and both α-syn and rotenone toxicity in mammalian cells. 

  

Discussion   

Our findings reveal deep links between distinct pathogenic aspects of α-syn 

toxicity.  Our previous work demonstrated that ER-to-Golgi trafficking defects are a 

prominent feature of intermediate levels of α-syn toxicity in yeast (IntTox strain) and in 

higher organisms (Cooper et al., 2006).  The IntTox strain also can be suppressed by single 

genetic modifiers (Yeger-Lotem et al., 2009).  In contrast, the HiTox α-syn strain, which 
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only expresses ~50% more α-syn, requires two genetic suppressors acting in separate 

pathways to rescue growth (Gitler et al., 2009; Kritzer et al., 2009).  Transcriptional 

profiling revealed that in this strain, in addition to ER-to-Golgi trafficking defects, 

mitochondrial dysfunction is an early pathologic phenotype.  Mitochondrial dysfunction, 

which was associated with the generation of ROS and marked mitochondrial 

morphological changes, was not a feature of the previously described IntTox strain.  Thus, 

the HiTox strain presented an opportunity to search for other core cellular processes 

affected by α-syn toxicity.   

The identification of mitochondrial dysfunction and ROS as a consequence of 

higher levels of α-syn toxicity in yeast cells is extremely compelling given the wealth of 

evidence that link mitochondrial dysfunction and oxidative stress to PD [for review, see 

(Mandemakers et al., 2007)].  Humans accidentally exposed to the mitochondrial toxin 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) develop Parkinsonism resulting from 

the immediate loss of dopaminergic neurons in the substantia nigra (Davis et al., 1979; 

Langston et al., 1983).  Similarly, rotenone induces dopaminergic degeneration with the 

accumulation of α-syn into LB-like aggregates when administered chronically to rats 

(Betarbet et al., 2000; Sherer et al., 2003; Norris et al., 2007).  In cell culture and in vivo 

α-syn overexpression sensitizes both cells and mice to MPTP (Song et al., 2004; Smith et 

al., 2005).  Moreover, aged transgenic mice over-expressing mutant α-syn exhibit 

profound mitochondrial defects within their neurons (Martin et al., 2006; Stichel et al., 

2007) and mice lacking α-syn have increased resistance to mitochondrial toxins (Dauer et 

al., 2002; Drolet et al., 2004; Klivenyi et al., 2006) and alterations in mitochondrial lipid 

content (Ellis et al., 2005).  Overall, despite a decade of intense investigation, a direct 

connection between α-syn toxicity and mitochondrial dysfunction has remained elusive. 

Recent reports have suggested the existence of a cryptic mitochondrial targeting 

sequence within the amino terminal of α-syn (Cole et al., 2008; Devi et al., 2008; Parihar et 

al., 2008) that might be responsible for toxicity in this organelle.  While we cannot exclude 

the possibility that α-syn might interact with mitochondria in mammalian cells, we found 

that only a very tiny fraction of α-syn localizes to mitochondria in the HiTox yeast cells 

which nevertheless exhibit profound mitochondrial defects (Fig. 2C).  Furthermore, the 

same quantity of α-syn was detected in mitochondria of the NoTox strain indicating that 
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the localization of small quantities of α-syn to mitochondria is not responsible for toxicity.  

Yet, the mitochondrial toxicity we detect in yeast must be highly related to that caused by 

α-syn and rotenone in neurons because compounds selected to rescue yeast from α-syn also 

rescue neurons from both α-syn and rotenone.  Rather that affecting mitochondria through 

direct localization to that organelle, our data indicate that α-syn interferes with deeply 

rooted biological processes that impinges upon pathways linking vesicle trafficking, the 

ER and mitochondria.   

How might ER-to-Golgi trafficking defects and mitochondrial dysfunction be 

linked?  Our earlier work has shown that the block in ER-to-Golgi trafficking is associated 

with impairment of ER-derived secretory vesicles failing to fuse with the Golgi (Gitler et 

al., 2008).  Increased α-syn expression could exacerbate ER homeostasis defects which in 

turn could impact mitochondria in at least three different ways.  The first derives from 

recent work demonstrating that mitochondria are focally tethered to the ER in both yeast 

(Kornmann et al., 2009) and mammalian cells (de Brito and Scorrano, 2008).  This 

attachment allows mitochondria to sense and take-up Ca2+ released by the ER into the 

cytosol (de Brito and Scorrano, 2008).  In addition to serving as a buffer for excess Ca2+, 

Ca2+-sensing also allows mitochondria to localize to parts of the cell (i.e. the synapse) 

where the local energy requirements are high.  Thus, decoupling connections to the ER 

would impair the mitochondria’s ability to sense and respond to cellular energy demands.   

Second, a blockade in ER trafficking might disrupt the autophagic destruction of 

abnormal mitochondria, so-called “mitophagy” (Van Laar and Berman, 2009).  The 

accumulation of dysfunctional mitochondria would then exacerbate cellular toxicity 

through the generation of ROS and impaired metabolism.  Indeed, in both mammalian 

neurons and yeast, ROS are a salient feature of α-syn toxicity.  The resultant ROS might 

also potentiate neurotoxicity by promoting the oligomerization of α-syn (Norris et al., 

2003) thus creating a vicious toxic circle.  

Finally, the ER and mitochondria also act together to coordinate lipid synthesis 

(Daum and Vance, 1997; Kornmann et al., 2009).  Specifically, after phosphatidylserine is 

synthesized in the ER, it is transferred to mitochondria for decarboxylation by Psd1 after 

which it is shuttled back to the ER for subsequent modification to form 

phosphatidylcholine (Kornmann et al., 2009).  α-Syn may impede the flow of biosynthetic 



 

 - 18 - 

 

components between these organelles just as it impedes the flow of vesicles from ER to 

Golgi.  Strikingly, abnormalities in lipid metabolism have also been noted in our yeast 

model (Outeiro and Lindquist, 2003) as well as in human PD brains (Gai et al., 2000).  The 

application of high throughput genomic, proteomic, and lipidomic assays to our yeast 

model offers an opportunity for elucidating the vitally important connections between α-

syn, the ER and mitochondria. 

Our results also suggest reasons why neurons might be particularly sensitive to α-

syn dysfunction.  Compared to most cell types, neurons have unusually strong demands for 

vesicle trafficking.  Catecholaminergic neurons are particularly susceptible because 

catecholamines are synthesized in the cytoplasm where they can exert toxicity unless they 

are immediately sequestered into secretory vesicles (Mosharov et al., 2009).  Deficits in the 

production of secretory vesicles would therefore be particularly toxic to certain neuronal 

populations.  Neurons also have intrinsically higher levels of respiration than most other 

cell types (Kandel, 2000) and are therefore vulnerable to disturbances in mitochondrial 

activity that are caused by α-syn.  Finally, the transcriptional response of yeast cells to α-

syn also revealed disruption of metal ion homeostasis (Fig. 1B).  This corroborates our 

previous finding that three metal ion transporters (for manganese, Ca2+ and iron) modify α-

syn toxicity (Gitler et al., 2009).  The brain is also particularly sensitive to perturbations in 

the balance of these ions.  Thus, the defects caused by α-syn would logically create a 

special combination of vulnerabilities in certain neurons. 

Our unbiased chemical screen of 115,000 compounds against the HiTox α-syn 

strain identified compounds capable of protecting against multiple pathologic processes 

elicited by α-syn toxicity.  The ability of these compounds to rescue disparate toxicities in 

this strain and to rescue both α-syn and rotenone toxicity in mammalian cells is 

remarkable.  The efficacy of the compounds in neuronal models reveals that not only have 

the cellular processes affected by α-syn been conserved through a billion years of 

evolution, so have the specific protein targets on which the compounds act with only 

modest differences in structure-activity relationships.  These studies add weight to the 

hypothesis that PD is a disorder of basic cellular dysfunction that certain neurons are 

particularly sensitive to.  Our unbiased approach successfully identified individual small 

molecules capable of tackling multiple aspects of disease pathophysiology.  These 
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highlight the power of using a simple model organism to elucidate complex biological 

processes and suggest new therapeutic strategies to treat human diseases. 

 

Materials and Methods 

Yeast Strains 

Yeast strains used were in the w303 pump-deleted background (MATα can1-100, 

his3-11,15, leu2-3,112, trp1-1, ura3-1, ade2-1, pdr1::kanMX, pdr3::kanMX).  The vector 

control strain contained empty vector at the trp and ura loci (pRS304Gal, pRS306GAL).  

The NoTox α-syn strain contained α-syn fused to green fluorescent protein (α-syn-GFP) 

inserted at the trp locus and empty vector at the ura locus (pRS304Gal-α-syn-GFP, 

pRS306GAL).  The HiTox α-syn strain contained α-syn-GFP inserted at the trp and ura 

loci (pRS304GAL-α-syn-GFP, pRS306GAL-α-syn-GFP). 

 

High throughput chemical screen 

 The high throughput screen was carried out at the Institute of Chemistry and Cell 

Biology and Harvard Medical School.  Over 115,000 compounds from various collections 

including commercial libraries, natural products, NCI collections were screened in a 384-

well format.  HiTox yeast cells were induced in galactose media (starting OD600 of 0.001) 

and dispensed into individual wells (300 nl final) containing the test compound (17 μg/ml 

final in DMSO).  Individual plates were incubated at 30°C for 2 days.  Each compound 

was tested in duplicate.  Each plate contained two sets of controls:  cells grown in glucose 

media (to suppress α-syn expression), and induced α-syn cells grown in the absence of any 

test compound.  Individual compounds were assessed for their ability to suppress α-syn 

toxicity by a readout in optical density (increased signal at OD600) and by fluorescence 

microscopy (loss of aggregation).   

 

Bioscreen 

Growth curves were monitored using Bioscreen (www.bioscreen.fi).  Yeast strains 

were pre-grown in 2% raffinose medium and induced in 2% galactose medium with 

starting OD600 of 0.1.  300 μl of induced cells were dispensed to individual wells, in 

presence of either the compound or vehicle control (1% DMSO final).  Each growth 
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condition was analyzed in triplicate wells per run.  Cells were grown at 30°C, with plates 

shaken every 30 seconds to ensure proper aeration and OD600 measurements taken every 

half hour over a two-day period.  The resulting data (OD600 versus time) were plotted using 

Kaleidagraph. 

 

Microscopy  

Imaging of live yeast cells to monitor either α-syn localization with GFP was 

carried out as previously described (Outeiro and Lindquist, 2003).   

 

Flow cytometry  

 Yeast cells were subjected to flow cytometry for measurements of reactive oxygen 

species (ROS) production as well as cell viability.  Briefly, 500 μl of cells were treated 

with CM-H2DCFDA (Invitrogen) and incubated with gentle shaking (750 rpm) at 30°C for 

20’ using an Eppendorf Thermomixer.  These cells were briefly sonicated (to prevent 

clumping) before transferring into a 96 well plate and examined using an EasyCyte Flow 

Cytometer (Guava Technologies) and analyzed with Flowjo (Treestar).  To assay for 

viability, 500 μl cells were briefly sonicated and treated with 10 μl of 1 mg/ml propidium 

iodide before proceeding with flow cytometry. 

 

CPY pulse-chase labeling experiments 

Yeast cells were grown overnight in 2% raffinose and induced in 2% galactose 

medium.  Concurrent with the galactose induction was the addition of compound (1 μM in 

1% DMSO final) or DMSO (1% final) and cells were grown at 30°C for 4.5 and 7 hours, 

followed by radiolabeling and immunoprecipitation as previously described (Cooper et al., 

2006). 

 

Subcellular fractionation 

NoTox and HiTox αSyn-expressing strains were cultured to log phase growth in 

2% raffinose-containing media prior to induction with 2% galactose for 4 hours. Cells 

were harvested and mitochondria isolated according to (Meisinger et al., 2006). Protein 

from total, crude mitochondria, and isolated mitochondria was normalized and 10 ug 
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protein resolved by SDS-PAGE. Western blotting with antibodies against alkaline 

phosphatase, PDI1, PGK1, Porin, and αSyn-GFP was used to analyze enrichment of 

mitochondria. 

 

C. elegans experiments 

All procedures were carried out at 25°C.  Gravid Pdat-1::GFP + Pdat-1::α-synuclein 

adults [strain UA44 (baIn11)] were synchronized and embryos were obtained as previously 

described (Cao et al., 2005).  The embryos were left in M9 buffer (22 mM KH2PO4, 22 

mM Na2HPO4, 85 mM NaCl, 1 mM MgSO4) in glass conical tubes with appropriate 

concentrations of compounds or vehicle control (time 0), and incubated at 25ºC for 24 

hours to obtain relatively synchronized L1 population, followed by three M9 buffer 

washes. The synchronized L1 worms were then spread onto regular nematode growth 

media (NGM) plates seeded with 100 μl of concentrated OP50 E. coli.  At 72 hours post-

hatching, one hundred and twenty worms were transferred to a fresh plate containing 0.4 

mg/ml 5-Fluoro-2’-deoxyuridine (FUDR) to inhibit progeny growth.  The worms were 

analyzed at 172 hours post-hatching. Each experiment was done in triplicate and the 

average was calculated. The analyses of neurodegeneration were carried out according to 

the criteria previously described(Cao et al., 2005). For each analysis, 55-120 worms were 

analyzed.  For worms treated at 2-day adult stages, embryos were incubated in M9 buffer 

after the synchronization.  Two-day adult worms (94 hours post-hatching) were incubated 

with compound or vehicle control solutions for 8 hours and analyzed at 172 hours post-

hatching. 

 

Lentiviral transduction of α-syn-A53T 

E17 rat primary mesencephalic cultures were prepared as described previously (Cooper et 

al., 2006). The cells were plated on coverslips at a density of 1300 cells per mm2. Four 

days after plating, the cells were treated with cytosine arabinofuranoside (20 μM) for 48 

hours to restrict the growth of glial cells. Cultures were then incubated in fresh media for 

an additional 24 hours. The cells were transduced with α-syn-A53T lentivirus (MOI = 5) as 

described previously (Cooper et al., 2006) and incubated with the compound (applied at a 

sublethal dosage; data not shown) or vehicle control (DMSO). After a 72-h transduction 



 

 - 22 - 

 

period, the cells were treated with fresh media for an additional 24 h prior to 

immunocytochemical analysis. Compounds (1)-(6), riboflavin and melatonin were applied 

concurrently with lentiviral transduction. 

 

Rotenone treatment of primary mesencephalic cultures 

E17 rat primary mesencephalic cultures were prepared as described above. In experiments 

aimed at determining the effects of the compounds on rotenone-induced toxicity, cultures 

were treated with rotenone (final concentration, 100 nM) and the compound or the vehicle 

control (DMSO) for 24-48 h prior to immunocytochemical analysis. In experiments aimed 

at determining the effects of Rab1 on rotenone toxicity, primary midbrain cultures were 

transduced with lentivirus encoding Rab1 (MOI 2). After 72 h, the cells were treated with 

fresh media containing rotenone (100 nM) for 24 h. Control cells were incubated in the 

absence of virus and then treated with fresh media supplemented with vehicle (DMSO). 

 

Dopaminergic neuron viability assay 

Immunocytochemistry was carried out as previously described (Cooper et al., 2006), using 

anti-MAP2 monoclonal IgG (1:500) and an anti-TH polyclonal antibody (1:500), and goat 

anti-rabbit IgG conjugated to AlexaFluor 488 (1:1000) and goat anti-mouse IgG 

conjugated to AlexaFluor 594 (1:1000). MAP2- and TH-immunoreactive primary neurons 

were counted in at least 10 randomly chosen observation fields for each treatment using a 

Nikon TE2000-U inverted fluorescence microscope with a 20x objective. The investigator 

responsible for counting cells was blind to the identity of the microscope slides. The data 

were expressed as the ratio of TH-positive neurons to MAP2-positive neurons. Each 

experiment was repeated at least 3 times (except for Rab1, where N = 2) using embryonic 

cultures isolated from independent pregnant rats. Statistical analyses were carried out using 

the program GraphPad Prism, Version 4.0 (http://www.graphpad.com/prism/Prism.htm). 

 

Microarray analysis 

Microarray experiments were carried out using Yeast Expression arrays from 

Whitehead Institute Center for Microarray Technology (WICMT).  A starter culture of 

each sample (~ 5 ml) was grown from a single colony taken from a freshly streaked plate.  
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To ensure synchronous induction, an aliquot of the starter culture was inoculated into fresh 

media and grown overnight to early stationary phase (OD 1.0).  Yeast cells were induced 

to a starting O.D. of 0.3 in galactose media in presence or absence of the compound (1 μM 

final), and harvested at 0, 2, 4, and 6 hours post-induction (50 ml aliquot per timepoint).  

Three biological triplicates, harvested on different days, were used for each array 

comparison. Total RNA was obtained using hot phenol-chloroform extraction (Schmitt et 

al., 1990), checked for purity by gel electrophoresis and BioAnalyzer, and labeled 

according to standard protocol.       

 Yeast Expression arrays were scanned and array data were extracted using 

GenePix.  Data were analyzed using the limma package from Bioconductor.  Spots were 

background corrected using a normal and exponential convolutional model, and an offset 

of 50 was added to reduce low-intensity noise.  Expression log-ratios were normalized by 

print tip using loess.  Differential expression was assayed at each timepoint using a 

moderated t-test, correcting for false discovery rate, for three pairwise comparisons 

between 1x α-syn, HiTox, and vector.  The microarray analysis data has been deposited at 

the National Center for Biotechnology Information Gene Expression Omnibus (repository 

#GSE11633). 

 

Thin-section EM 

Thin-section EM was carried out as previously described (Gitler et al., 2008). 
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Figure Legends 

Fig. 1   Transcriptional profiling of yeast expressing α-syn revealed mitochondrial stress as 

a key signature in α-syn toxicity.  A.  Profiles of 673 genes exhibiting differential 

expression in at least one experiment (compared against Vector) at 2 and 4 hours post α-

syn induction (p-value<0.05; >2-fold) are shown.  These genes exhibited very little 

changes in NoTox cells.  In contrast, some of these genes were differentially expressed in 

HiTox cells as early as 2 hours post-induction, well before onset of toxicity (at 4 hours).  In 

contrast to treatment with inactive compounds (5) and (6), treatment with active 

compounds (1), (2), and (4) resulted in a major reduction of transcriptional 

changes, indicating rescue. Differentially expressed genes were color-coded in red 

(upregulated) and green (downregulated).  B.  GO annotation of differentially regulated 

genes (>2-fold) revealed upregulation in the expression of oxidoreductase transcripts and 

down-regulation in the expression of mitochondrial, ribosomal, respiratory and 

carbohydrate transport transcripts in HiTox α-syn cells induced for 4 hours.  The 

expression of transition metal ion binding transcripts was both up- and downregulated.  

Similar, more subtle changes were detects in HiTox cells after 2 hours of induction.  Only 

slight downregulation of carbohydrate transport transcripts were detected in NoTox cells 

after 4 hours of induction.  C.  Treatment with compounds (1) or (2) markedly reversed the 

HiTox-induced transcriptional changes in the ribosomal, mitochondrial, respiratory, and 

oxidoreductase GO categories.  Compound (4) showed a more modest transcriptional 

restoration in these categories.  Compounds (5) and (6) exhibited partial reversal of the α-

syn induced transcriptional changes in these GO categories, however, the magnitude of this 

reversal was less complete that that seen in cells treated with compounds (1), (2), or (4). 

 

Fig. 2.  HiTox cells exhibit mitochondrial abnormalities.  A.  Thin section EM of HiTox 

cells at 4 hours post-induction.  NoTox cells (b) exhibited comparable features to those of 

cells expressing vector (a), whereas HiTox cells exhibited numerous defects, including 

vesicular accumulation, swollen and less electron-dense mitochondria, and hypertrophied 

ER (c, and inset).  Legends:  m = mitochondria, n = nucleus, v = vacuole.  An asterisk 

denotes the vesicle clusters.  Scale bar = 1.0 μm.  B.  Reactive oxygen species (ROS) 

production was measured using CM-H2DCFDA.  Vector or NoTox cells had very little or 
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no ROS, whereas nearly 35% of HiTox cells exhibited ROS.  ROS reactivity in HiTox 

cells was ameliorated upon treatment with (1) – (4) (<15%), but not with (5) or (6) 

(>25%).  Bar graph shows the mean ± s.e.m.. from at least three independent experiments, 

and an asterisk (*) represents a value that significantly differed from that of HiTox, with p-

value less than 0.05 as determined by two-tailed Student’s t-test.  C.  Subcellular 

fractionation shows little α-syn in the mitochondria.  NoTox and HiTox strains were 

subjected to cellular fractionation to track compartmentalization of α-synGFP.  Western 

blots (left) and coomassie staining (right) of three fractions are shown:  total lysate 

(S4,000), crude mitochondrial pellet (P13,000), and gradient purified mitochondria 

(Mito.).  Western blot analysis shows the specific enrichment for mitochondria in the 

gradient (Porin).  P13,000 fraction contains vacuole, ER, and mitochondria while most α-

synGFP remains soluble in S13,000.  Only mitochondria are highly enriched by the 

sucrose step gradient with most α-synGFP eliminated from this fraction.  Quantitative 

western analysis with the Licor Odyssey infrared imaging (data not shown) revealed that 

only 0.11% (NoTox) and 0.02% (HiTox) of α-synGFP localized to mitochondria.  The 

absolute amount of mitochondrial α-synGFP does not change, rather the difference 

between NoTox and HiTox is a function of higher total α-synGFP levels in the HiTox 

strain. 

 

Fig. 3   A high-throughput chemical screen identified small molecule antagonists of α-syn 

toxicity.  A. Secondary screen identified 4 bioactive molecules rescuing at μM 

concentration, as well as 2 biologically inactive molecules, all representing the same 

chemical family.  B.  Growth curve of HiTox cells (black curve), which did not grow.  

Bioactive compound (3) was maximally effective at 1 μM, restoring growth of HiTox cells 

up to nearly 50% of that for wild-type cells (Fig. S5) at 48 hours post-induction.  C. 

Growth of HiTox cells was rescued by treatment with 1 μM of the bioactive compounds 

((1), (2), (3), (4)), but not by compounds (5) or (6).  These differences were consistent over 

three different experiments but that slight differences in starting OD and room 

temperature/humidity prohibit averaging across experiments.  D. Propidium iodide (PI) 

staining for cell viability revealed ~ 25% toxicity in HiTox cells at 6 hours after induction.  

Treating HiTox cells with 1 μM (3) restored viability (by reducing toxicity to < 10%), 
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whereas (5) had no significant effect.  The bar graph shows the mean ± s.e.m... from at 

least three independent experiments, and an asterisk (*) represents a value that 

significantly differed from that of HiTox, with p-value less than 0.05 as determined by 

two-tailed Student’s t-test. 

 

Fig. 4   Validation of lead compounds in higher order model systems.  A-C.  C. elegans 

model w/ α-syn over-expression in dopaminergic neurons.  Blinded assay identified 

compounds (1), (2), (3), (4) as active, and compounds (5) and (6) as inactive.  (A-B bar 

graph showing number of worms with all 4 intact CEP neurons in each treatment; A, 

Embryo; B, adult worms; The bar graph shows the mean ± s.d. from at least three 

independent experiments, and an asterisk (*) represents a value that significantly differed 

(p-value < 0.05; two-tailed Student’s t-test) from that of α-syn worms receiving only the 

vehicle DMSO.  C.  Photo of GFP-tagged neurons in each type of treatment.  Importantly, 

these compounds exerted a rescue in adult worms that have been over-expressing α-syn for 

some time (B).  D-E.  Primary midbrain culture model, in which cells were transfected 

with lentivirus encoding α-syn A53T mutation.  D.  Immunofluorescence (IF) images of 

midbrain cultures.  Transduction with A53T lentivirus led to abnormal neuronal 

morphology, including loss of bipolar neuronal processes and shrunken cell bodies.  These 

effects are partially reversed in cultures treated with (1), but not (5).  Red, MAP2 marker; 

Green, TH marker; Yellow, overlap.  Scale bar, 20 μm.  E.  Blinded assay carried out in 

cultures transduced with α-syn-A53T lentivirus identified compounds (1), (2), (3), and (6) 

as suppressors.  The concentrations of these compounds on the bar graph were as follows:  

(1), 0.5 μg/ml; (2), 1.0 μg/ml; (3), 0.25 μg/ml; (4), 0.125 μg/ml; (5), 0.05 μg/ml; (6), 1.0 

μg/ml.  The bar graph shows the mean ± s.e.m.. from at least four independent 

experiments, and an asterisk (*) represents a significant difference with respect to the value 

obtained for cells expressing A53T-α-syn in the absence of compound (p-value < 0.05; 

one-way ANOVA with Newman-Keuls post-test).   

 

Fig. 5   The bioactive compounds restored aSyn membrane localization, ER to Golgi 

trafficking, and mitochondrial morphology.  A.  Microscopy studies with GFP-tagged α-
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syn at 4 hours post-induction showed α-syn foci in HiTox cells.  Localization of α-syn was 

restored to the plasma membrane upon treatment with the bioactive compounds.  In 

contrast, bright foci were retained in cells treated with inactive compounds.  B.  CPY 

maturation assay.  The bar graph depicts the percentage of CPY that exits ER and entered 

Golgi or the vacuole in various treatments.  At 4.5 hours post-induction, HiTox cells 

exhibited severe trafficking defects, as majority of CPY was retained in the ER (~ 65%; 

DMSO and data not shown).  This defect was suppressed by cells treated with 1 μM of the 

bioactive compounds [(1), (2), (3), and (4)], but not by the inactive compounds [(5), (6)].  

Gel slices (left), bar graph shows the mean± s.e.m... (right).   C.  Treatment with 1 μM (1) 

- (4) (a-d), but not with (5) or (6) (e-f), restored ER as well as most of the mitochondria to 

normal morphology, but some vesicular accumulation persisted.  Legends:  m = 

mitochondria, n = nucleus, v = vacuole.  An asterisk denotes the vesicle clusters.  Scale bar 

= 1.0 μm.   

 

Fig. 6   Effect of lead compounds on rotenone neurotoxicity.  A.  Immunofluorescence (IF) 

images of the primary midbrain cultures.  Treatment with (1) dramatically restored the 

neuronal morphology of rotenone-treated neurons.  Red, MAP2 marker; Green, TH 

marker; Yellow, overlap.  Scale bar, 20 μm.  B.  Exposure to 100 nM rotenone resulted in 

>50% death of dopaminergic neurons, whereas compound (1) antagonized rotenone-

induced dopaminergic cell death in a concentration-dependent manner.  The bar graph 

shows the mean ± s.e.m... from at least three independent experiments, and asterisks (***) 

represent a significant difference with respect to the value obtained for cells exposed to 

rotenone alone (p-value < 0.001; one-way ANOVA with Dunnett’s post-test). 

 

Supplemental Figure Legends 

Supplemental Fig. S1 High levels of α-syn expression (HiTox) elicit measurable levels of 

cell death by propidium iodide after 4 hours of induction in galactose media. No cell death 

is detected in cells expressing non-toxic levels of α-syn (NoTox). 

 

Supplemental Fig. S2 The yeast inactive compound (5) competitively inhibits the 

cytoprotective activity of compound (3).  Growth of vector (A) and HiTox α-syn cells (B) 
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were measured for a period of 48 hours.  A.  Treatment with compound (3), (5), or both did 

not alter the growth of the vector cells.  B.  Treatment with 1 μM compound (3) modestly 

increased the growth of HiTox α-syn cells.  This rescue by compound (3) was blocked by 

the addition of compound (5) in a dose-dependant manner.  

 

Supplemental Fig. S3 Suppression of α-syn toxicity by the active compounds is still seen 

using estradiol-induction of α-syn expression in galactose-free media.  An estradiol-

inducible transactivator was introduced to control the expression of α-syn.  Cell death was 

measured using propidium iodide.  Cell death in HiTox α-syn cells was suppressed by 1 

μM compounds (1) – (4) but not by compounds (5) or (6). 

 

Supplemental Fig. S4 Compound (4) does not suppress the toxicity of huntingtin-72Q in 

yeast cells.  The growth of yeast expressing exon 1 of huntingtin with a 72 repeat 

glutamine expansion was measured for a period of 48 hours of induction in galactose.  

Treatment with up to 50 μM compound (4) did not alter the toxicity of huntingtin-72Q to 

yeast cells. 

 

Supplemental Fig. S5 Compounds (1) and (4) do not alter the rate of α-syn fibril 

formation.  α-Syn fibers were assembled under standard conditions in the presence of 

stoichiometric quantities of either compound (1) or (4) and the rate of fibril formation waas 

monitered by thioflavin T fluorescence at 490 nm. 

 

Supplemental Fig. S6 Compounds (3), (4), and (5) protect against the toxicity of rotenone 

to dopaminergic neurons in rat midbrain cultures.  Rat midbrain cultures were exposed to 

100 nM rotenone or vehicle for 24-48 hours prior to immunocytochemical analysis.  A.  

Treatment with 0.5 μg/mL compound (4) significantly suppressed the toxicity of rotenone.  

Higher concentrations of compound (4) (2 μg/mL) were less effective.  B.  Treatment with 

0.05 μg/mL compound (3) or 0.25 μg/mL compound (5) also demonstrated neuroprotective 

activity, although treatment with compound (3) did not reach statistical significance.  C.  

Overexpression of mRab1, which antagonizes α-syn toxicity, did not suppress the toxicity 

of rotenone to dopaminergic neurons in the rat midbrain cultures.  (* p-value <0.05, ** p-
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value <0.01, ***p-value <0.001, N.S. not significant; One-way ANOVA with Newman 

Keuls post-test.) 

 

Supplemental Fig. S7 N-acetylcysteine (NAC) protects against oxidative stress but not α-

syn toxicity.  A.  Vector control cells were exposed to H2O2 for 1 hour before assaying for 

generation of reactive oxygen species (ROS; CM-H2DCFDA).  Treatment with 1-25 mM 

NAC reduced the amount of ROS generated by H2O2 exposure.  Compound (3) did not 

reduce the generation of ROS due to H2O2.  B.  HiTox α-syn cells were treated with 

vehicle, 1-25 mM NAC, or 1 μM compound (3) for 6 hours before assaying for cell 

viability using propidium iodide labeling.  NAC was not protective against the toxicity of 

α-syn.  (* p-value <0.05). 

 

Supplemental Fig. S8 Melatonin protects against oxidative stress but not α-syn toxicity. 

A.  Vector control cells were exposed to H2O2 for 1 hour before assaying for cell death (PI 

labeling).  Treatment with 100 uM melatonin reduced PI labeling from 12% to 4%, the 

level of PI labeling also seen in cells not exposed to H2O2.  B.  Treatment with melatonin 

did not reverse the growth inhibition seen in HiTox α-syn cells over a 24 hour treatment 

period.  

 

Supplemental Fig. S9 Riboflavin protects against oxidative stress but not α-syn toxicity.  

Top, Exposure to H2O2 yielded modest toxicity in vector cells.  This toxicity was partially 

ameliorated upon treatment with riboflavin.  Bottom, Riboflavin did not ameliorate α-syn 

toxicity in the IntTox or HiTox strains. 

 

Supplemental Fig. S10 Treatment with neither N-acetylcysteine (NAC) nor ascorbic acid 

protected against the toxicity of α-syn to CEP neurons in C. elegans.  Treatment with 

compound (3) increased the preservation of CEP neurons to 50% of animals.  Treatment 

with NAC or ascorbic acid did not alter the preservation of CEP neurons. (* p-value < 

0.05) 
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Supplemental Fig. S11 Treatment with neither melatonin nor riboflavin protected against 

the toxicity of α-syn-A53T to dopaminergic neurons in the primary rat neuronal cultures.  

Rat midbrain cultures were treated with 0.1% DMSO (A), 1 μM melatonin (B), or 10 μM 

riboflavin (C). 

 














