43 research outputs found

    Noise investigation of a dual-frequency VECSEL for application to Cesium clocks

    Get PDF
    We theoretically and experimentally study the noise of a class-A dual-frequency vertical external cavity surface emitting laser operating at Cesium clock wavelength. The intensity noises of the two orthogonally polarized modes and the phase noise of their beatnote are investigated. The intensity noises of the two modes and their correlations are well predicted by a theory based on coupled rate equations. The phase noise of the beatnote is well described by considering both thermal effects and the effect of phase-amplitude coupling. The good agreement between theory and experiment indicates possible ways to further decrease the laser noises

    Fully-correlated pumping for dual-frequency VECSELs dedicated to cesium CPT clocks

    Get PDF
    We report a fully-correlated multi-mode pumping architecture optimized for dramatic noise reduction of a class-A dual-frequency Vertical External Cavity Surface Emitting Laser (VECSEL). Thanks to amplitude division of a laser diode, the two orthogonally polarized modes emitted by the VECSEL oscillating at 852 nm are separately pumped by two beams exhibiting fully in--phase correlated intensity noises. This is shown to lead to very strong and in-phase correlations between the two lasing modes intensities. As a result, the phase noise power spectral density of the RF beat note generated by the two modes undergoes a drastic reduction of about 10 to 20 dB throughout the whole frequency range from 10 kHz to 20 MHz and falls below the detection floor above a few MHz. A good agreement is found with a model which uses the framework of rate equations coupled by cross--saturation. The remaining phase noise is attributed to thermal effects and additional technical noises and lies mainly within the bandwidth of a phase-locked-loop

    Ramsey CPT Signal Generation with a Miniature Clock Bench and a Dual-Frequency Optical Generator

    Full text link
    We demonstrate, for the first time, Ramsey CPT spectroscopy with a miniature electro-optical bench associated to a dual-frequency generator based on combined optical injection locking and optical phase locking techniques Preliminary results show Ramsey CPT resonance with a contrast of 2% at the Cesium D2 line. Frequency difference locking loops lead to a contribution of Dick effect to fractional frequency stability lower than 1.7x10-13 at 1 s, in line with targeted clock stability of 5x10-13 at 1 s

    Suppression of Nonlinear Interactions in Resonant Macroscopic Quantum Devices : the Example of the Solid-State Ring Laser Gyroscope

    Full text link
    We study the suppression of nonlinear interactions in resonant macroscopic quantum devices in the case of the solid-state ring laser gyroscope. These nonlinear interactions are tuned by vibrating the gain medium along the cavity axis. Beat note occurrence under rotation provides a precise measurement of the strength of nonlinear interactions, which turn out to vanish for some discrete values of the amplitude of vibration. Our theoretical description, in very good agreement with the measured data, suggests the use of a higher vibration frequency to achieve quasi-ideal rotation sensing over a broad range of rotation speeds. We finally underline the analogy between this device and some other macroscopic quantum rotation sensors, such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned for example by the use of magnetically-induced Feschbach resonance

    Suppression of Nonlinear Interactions in Resonant Macroscopic Quantum Devices : the Example of the Solid-State Ring Laser Gyroscope

    No full text
    International audienceWe study the suppression of nonlinear interactions in resonant macroscopic quantum devices in the case of the solid-state ring laser gyroscope. These nonlinear interactions are tuned by vibrating the gain medium along the cavity axis. Beat note occurrence under rotation provides a precise measurement of the strength of nonlinear interactions, which turn out to vanish for some discrete values of the amplitude of vibration. Our theoretical description, in very good agreement with the measured data, suggests the use of a higher vibration frequency to achieve quasi-ideal rotation sensing over a broad range of rotation speeds. We finally underline the analogy between this device and some other macroscopic quantum rotation sensors, such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned for example by the use of magnetically-induced Feschbach resonance
    corecore