137 research outputs found

    Model for Folding and Aggregation in RNA Secondary Structures

    Get PDF
    We study the statistical mechanics of RNA secondary structures designed to have an attraction between two different types of structures as a model system for heteropolymer aggregation. The competition between the branching entropy of the secondary structure and the energy gained by pairing drives the RNA to undergo a `temperature independent' second order phase transition from a molten to an aggregated phase'. The aggregated phase thus obtained has a macroscopically large number of contacts between different RNAs. The partition function scaling exponent for this phase is \theta ~ 1/2 and the crossover exponent of the phase transition is \nu ~ 5/3. The relevance of these calculations to the aggregation of biological molecules is discussed.Comment: Revtex, 4 pages; 3 Figures; Final published versio

    Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns

    Get PDF
    A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    Slower recovery in space before collapse of connected populations

    Get PDF
    Slower recovery from perturbations near a tipping point and its indirect signatures in fluctuation patterns have been suggested to foreshadow catastrophes in a wide variety of systems. Recent studies of populations in the field and in the laboratory have used time-series data to confirm some of the theoretically predicted early warning indicators, such as an increase in recovery time or in the size and timescale of fluctuations. However, the predictive power of temporal warning signals is limited by the demand for long-term observations. Large-scale spatial data are more accessible, but the performance of warning signals in spatially extended systems needs to be examined empirically. Here we use spatially extended yeast populations, an experimental system with a fold bifurcation (tipping point), to evaluate early warning signals based on spatio-temporal fluctuations and to identify a novel spatial warning indicator. We found that two leading indicators based on fluctuations increased before collapse of connected populations; however, the magnitudes of the increases were smaller than those observed in isolated populations, possibly because local variation is reduced by dispersal. Furthermore, we propose a generic indicator based on deterministic spatial patterns, which we call ‘recovery length’. As the spatial counterpart of recovery time, recovery length is the distance necessary for connected populations to recover from spatial perturbations. In our experiments, recovery length increased substantially before population collapse, suggesting that the spatial scale of recovery can provide a superior warning signal before tipping points in spatially extended systems.United States. National Institutes of Health (NIH R00 GM085279-02)United States. National Institutes of Health (NIH DP2)Alfred P. Sloan FoundationNational Science Foundation (U.S.

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Early warning signals of simulated Amazon rainforest dieback

    Get PDF
    Copyright © The Author(s) 2013. This article is published with open access at Springerlink.comWe test proposed generic tipping point early warning signals in a complex climate model (HadCM3) which simulates future dieback of the Amazon rainforest. The equation governing tree cover in the model suggests that zero and non-zero stable states of tree cover co-exist, and a transcritical bifurcation is approached as productivity declines. Forest dieback is a non-linear change in the non-zero tree cover state, as productivity declines, which should exhibit critical slowing down. We use an ensemble of versions of HadCM3 to test for the corresponding early warning signals. However, on approaching simulated Amazon dieback, expected early warning signals of critical slowing down are not seen in tree cover, vegetation carbon or net primary productivity. The lack of a convincing trend in autocorrelation appears to be a result of the system being forced rapidly and non-linearly. There is a robust rise in variance with time, but this can be explained by increases in inter-annual temperature and precipitation variability that force the forest. This failure of generic early warning indicators led us to seek more system-specific, observable indicators of changing forest stability in the model. The sensitivity of net ecosystem productivity to temperature anomalies (a negative correlation) generally increases as dieback approaches, which is attributable to a non-linear sensitivity of ecosystem respiration to temperature. As a result, the sensitivity of atmospheric CO2 anomalies to temperature anomalies (a positive correlation) increases as dieback approaches. This stability indicator has the benefit of being readily observable in the real world.NERCJoint DECC/Defra Met Office Hadley Centre Climate ProgrammeUniversity of Exete
    • …
    corecore