15 research outputs found

    An actin remodeling role for Arabidopsis processing bodies revealed by their proximity interactome

    Get PDF
    Cellular condensates can comprise membrane-less ribonucleoprotein assemblies with liquid-like properties. These cellular condensates influence various biological outcomes, but their liquidity hampers their isolation and characterization. Here, we investigated the composition of the condensates known as processing bodies (PBs) in the model plant Arabidopsis thaliana through a proximity-biotinylation proteomics approach. Using in situ protein-protein interaction approaches, genetics and high-resolution dynamic imaging, we show that processing bodies comprise networks that interface with membranes. Surprisingly, the conserved component of PBs, DECAPPING PROTEIN 1 (DCP1), can localize to unique plasma membrane subdomains including cell edges and vertices. We characterized these plasma membrane interfaces and discovered a developmental module that can control cell shape. This module is regulated by DCP1, independently from its role in decapping, and the actin-nucleating SCAR-WAVE complex, whereby the DCP1-SCAR-WAVE interaction confines and enhances actin nucleation. This study reveals an unexpected function for a conserved condensate at unique membrane interfaces

    Stress-related biomolecular condensates in plants

    Get PDF
    This review describes the mechanism, regulation, composition, and properties of stress-related biomolecular condensates in plants.Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, 2 of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance

    Design and rationale of a multicentre, randomised, double-blind, placebo-controlled clinical trial to evaluate the effect of vitamin D on ventricular remodelling in patients with anterior myocardial infarction: the VITamin D in Acute Myocardial Infarction (VITDAMI) trial

    Get PDF
    Introduction:Decreased plasma vitamin D (VD) levels are linked to cardiovascular damage. However, clinical trials have not demonstrated a benefit of VD supplements on left ventricular (LV) remodelling. Anterior ST-elevation acute myocardial infarction (STEMI) is the best human model to study the effect of treatments on LV remodelling. We present a proof-of-concept study that aims to investigate whether VD improves LV remodelling in patients with anterior STEMI. Methods and analysis:The VITamin D in Acute Myocardial Infarction (VITDAMI) trial is a multicentre, randomised, double-blind, placebo-controlled trial. 144 patients with anterior STEMI will be assigned to receive calcifediol 0.266 mg capsules (Hidroferol SGC)/15 days or placebo on a 2:1 basis during 12 months. Primary objective:to evaluate the effect of calcifediol on LV remodelling defined as an increase in LV end-diastolic volume >= 10\% (MRI). Secondary objectives:change in LV end-diastolic and end-systolic volumes, ejection fraction, LV mass, diastolic function, sphericity index and size of fibrotic area; endothelial function; plasma levels of aminoterminal fragment of B-type natriuretic peptide, galectin-3 and monocyte chemoattractant protein-1; levels of calcidiol (VD metabolite) and other components of mineral metabolism (fibroblast growth factor-23 (FGF-23), the soluble form of its receptor klotho, parathormone and phosphate). Differences in the effect of VD will be investigated according to the plasma levels of FGF-23 and klotho. Treatment safety and tolerability will be assessed. This is the first study to evaluate the effect of VD on cardiac remodelling in patients with STEMI. Ethics and dissemination: This trial has been approved by the corresponding Institutional Review Board (IRB) and National Competent Authority (Agencia Espanola de Medicamentos y Productos Sanitarios (AEMPS)). It will be conducted in accordance with good clinical practice (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use-Good Clinical Practice (ICH-GCP)) requirements, ethical principles of the Declaration of Helsinki and national laws. The results will be submitted to indexed medical journals and national and international meetings.The VITDAMI trial is an investigator initiated study, sponsored by the Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS-FJD). Funding has been obtained from Fondo de Investigaciones Sanitarias (PI14/01567; http://www.isciii.es/) and Spanish Society of Cardiology (http://secardiologia.es/). In addition, the study medication has been provided freely by the pharmaceutical Company FAES FARMA S.A. (Leioa, Vizcaya, Spain; http://faesfarma.com/). This company was the only funder who collaborated in study design (IG-H).S

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Genome-wide analysis of uncapped mRNAs under heat stress in Arabidopsis

    Get PDF
    Recently, we have showed that Tudor Staphylococcal Nuclease (TSN or Tudor-SN) proteins (TSN1 and TSN2) are localized in cytoplasmic messenger ribonucleoprotein (mRNP) complexes called stress granules (SG) and processing bodies (PB) under heat stress in Arabidopsis. One of the primary functions of these mRNP complexes is mRNA decay, which generates uncapped mRNAs by the action of endonucleases and decapping enzymes (Thomas et al., 2011) [1]. In order to figure out whether TSN proteins could be implicated in mRNA decay, we isolated uncapped and total mRNAs of Wild type (WT; Col and Ler) and TSN double knock-out (tsn1tsn2) seedlings grown under heat stress (39 °C for 40 min) and control (23 °C) conditions. Here, we provide the experimental procedure to reproduce the results (NCBI GEO accession number GSE63522) published by Gutierrez-Beltran et al. (2015) in The Plant Cell [2]

    Interactome of Arabidopsis ATG5 Suggests Functions beyond Autophagy

    Get PDF
    Autophagy is a catabolic pathway capable of degrading cellular components ranging from individual molecules to organelles. Autophagy helps cells cope with stress by removing superfluous or hazardous material. In a previous work, we demonstrated that transcriptional upregulation of two autophagy-related genes, ATG5 and ATG7, in Arabidopsis thaliana positively affected agronomically important traits: biomass, seed yield, tolerance to pathogens and oxidative stress. Although the occurrence of these traits correlated with enhanced autophagic activity, it is possible that autophagy-independent roles of ATG5 and ATG7 also contributed to the phenotypes. In this study, we employed affinity purification and LC-MS/MS to identify the interactome of wild-type ATG5 and its autophagy-inactive substitution mutant, ATG5(K128R) Here we present the first interactome of plant ATG5, encompassing not only known autophagy regulators but also stress-response factors, components of the ubiquitin-proteasome system, proteins involved in endomembrane trafficking, and potential partners of the nuclear fraction of ATG5. Furthermore, we discovered post-translational modifications, such as phosphorylation and acetylation present on ATG5 complex components that are likely to play regulatory functions. These results strongly indicate that plant ATG5 complex proteins have roles beyond autophagy itself, opening avenues for further investigations on the complex roles of autophagy in plant growth and stress responses

    An actin remodeling role for Arabidopsis processing bodies revealed by their proximity interactome

    No full text
    Cellular condensates can comprise membrane-less ribonucleoprotein assemblies with liquid-like properties. These cellular condensates influence various biological outcomes, but their liquidity hampers their isolation and characterization. Here, we investigated the composition of the condensates known as processing bodies (PBs) in the model plant Arabidopsis thaliana through a proximity-biotinylation proteomics approach. Using in situ protein–protein interaction approaches, genetics and high-resolution dynamic imaging, we show that processing bodies comprise networks that interface with membranes. Surprisingly, the conserved component of PBs, DECAPPING PROTEIN 1 (DCP1), can localize to unique plasma membrane subdomains including cell edges and vertices. We characterized these plasma membrane interfaces and discovered a developmental module that can control cell shape. This module is regulated by DCP1, independently from its role in decapping, and the actin-nucleating SCAR–WAVE complex, whereby the DCP1–SCAR–WAVE interaction confines and enhances actin nucleation. This study reveals an unexpected function for a conserved condensate at unique membrane interfaces

    Stress-related biomolecular condensates in plants

    No full text
    Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, 2 of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance.This work was supported by grants from the Ministerio de Ciencia e Innovacion, grant PID2020-119737GA-I00 (MCIN/AEI/10.13039/501100011033) and Junta de Andalucia (ProyExcel_00587) to E.G.-B., the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH–CREATE–INNOVATE (“BIOME” project code: Τ2ΕΔΚ-00597) to P.N.M., an EU Marie Curie-RISE grant (“PANTHEON”, project number 872969) to P.N.M., The Carl Trygger Foundation (contract number 15 and 17: 336) to P.N.M., The Swedish Research Council Vetenskapsrådet (VR) research council (contract number 21679000) to P.N.M., Svenska Forskningsrådet Formas (contract number 22924-000) to P.N.M., the Hellenic Foundation for Research and Innovation (HFRI-Always Strive for Excellence-Theodoros Papazoglou, “NESTOR,” contract number 1264) to P.N.M., and IMBB-FORTH start-up funds to P.N.M.; NSF 2226270 to A.S., KAUST to M.C., and The Knut and Alice Wallenberg Foundation (contract number 2021.0071) to P.V.B. and P.N.M., The Carl Trygger Foundation (contract number 22:2025) to P.V.B., and The Swedish Research Council VR (contract number 2019-04250) to P.V.B. and P.N.M.Peer reviewe
    corecore