1,019 research outputs found

    A novel AhR ligand, 2AI, protects the retina from environmental stress.

    Get PDF
    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2'-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice

    Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Soybean (<it>Glycine max </it>[L] Merr.) seed isoflavones have long been considered a desirable trait to target in selection programs for their contribution to human health and plant defense systems. However, attempts to modify seed isoflavone contents have not always produced the expected results because their genetic basis is polygenic and complex. Undoubtedly, the extreme variability that seed isoflavones display over environments has obscured our understanding of the genetics involved.</p> <p>Results</p> <p>In this study, a mapping population of RILs with three replicates was analyzed in four different environments (two locations over two years). We found a total of thirty-five main-effect genomic regions and many epistatic interactions controlling genistein, daidzein, glycitein and total isoflavone accumulation in seeds. The use of distinct environments permitted detection of a great number of environment-modulated and minor-effect QTL. Our findings suggest that isoflavone seed concentration is controlled by a complex network of multiple minor-effect loci interconnected by a dense epistatic map of interactions. The magnitude and significance of the effects of many of the nodes and connections in the network varied depending on the environmental conditions. In an attempt to unravel the genetic architecture underlying the traits studied, we searched on a genome-wide scale for genomic regions homologous to the most important identified isoflavone biosynthetic genes. We identified putative candidate genes for several of the main-effect and epistatic QTL and for QTL reported by other groups.</p> <p>Conclusions</p> <p>To better understand the underlying genetics of isoflavone accumulation, we performed a large scale analysis to identify genomic regions associated with isoflavone concentrations. We not only identified a number of such regions, but also found that they can interact with one another and with the environment to form a complex adaptable network controlling seed isoflavone levels. We also found putative candidate genes in several regions and overall we advanced the knowledge of the genetics underlying isoflavone synthesis.</p

    Symbolic dynamics to enhance diagnostic ability of portable oximetry from the Phone Oximeter in the detection of paediatric sleep apnoea

    Get PDF
    Objective: This study is aimed at assessing symbolic dynamics as a reliable technique to characterize complex fluctuations of portable oximetry in the context of automated detection of childhood obstructive sleep apnoea-hypopnoea syndrome (OSAHS). Approach: Nocturnal oximetry signals from 142 children with suspected OSAHS were acquired using the Phone Oximeter: a portable device that integrates a pulse oximeter with a smartphone. An apnoea-hypopnoea index (AHI) ⩾ 5 events h−1 from simultaneous in-lab polysomnography was used to confirm moderate-to-severe childhood OSAHS. Symbolic dynamics was used to parameterise non-linear changes in the overnight oximetry profile. Conventional indices, anthropometric measures, and time-domain linear statistics were also considered. Forward stepwise logistic regression was used to obtain an optimum feature subset. Logistic regression (LR) was used to identify children with moderate-to-severe OSAHS. Main results: The histogram of 3-symbol words from symbolic dynamics showed significant differences (p &lt; 0.01) between children with AHI &lt; 5 events h−1 and moderate-to-severe patients (AHI ⩾ 5 events h−1). Words representing increasing oximetry values after apnoeic events (re-saturations) showed relevant diagnostic information. Regarding the performance of individual characterization approaches, the LR model composed of features from symbolic dynamics alone reached a maximum performance of 78.4% accuracy (65.2% sensitivity; 86.8% specificity) and 0.83 area under the ROC curve (AUC). The classification performance improved combining all features. The optimum model from feature selection achieved 83.3% accuracy (73.5% sensitivity; 89.5% specificity) and 0.89 AUC, significantly (p &lt;0.01) outperforming the other models. Significance: Symbolic dynamics provides complementary information to conventional oximetry analysis enabling reliable detection of moderate-to-severe paediatric OSAHS from portable oximetry

    Middle Meningeal artery Embolization For Chronic Subdural Hematomas With Concurrent antithrombotics

    Get PDF
    BACKGROUND: Chronic subdural hematoma (CSDH) is an increasingly prevalent disease in the aging population. Patients with CSDH frequently suffer from concurrent vascular disease or develop secondary thrombotic complications requiring antithrombotic treatment. OBJECTIVE: to determine the safety and impact of early reinitiation of antithrombotics after middle meningeal artery embolization for chronic subdural hematoma. METHODS: This is a single-institution, retrospective study of patients who underwent middle meningeal artery (MMA) embolizations for CSDH. Patient with or without antithrombotic initiation within 5 days postembolization were compared. Primary outcome was the rate of recurrence within 60 days. Secondary outcomes included rate of reoperation, reduction in CSDH thickness, and midline shift. RESULTS: Fifty-seven patients met inclusion criteria. The median age was 66 years (IQR 58-76) with 21.1% females. Sixty-six embolizations were performed. The median length to follow-up was 20 days (IQR 14-44). Nineteen patients (33.3%) had rapid reinitiation of antithrombotics (5 antiplatelet, 11 anticoagulation, and 3 both). Baseline characteristics between the no antithrombotic (no-AT) and the AT groups were similar. The recurrence rate was higher in the AT group (no-AT vs AT, 9.3 vs 30.4%, P = .03). Mean absolute reduction in CSDH thickness and midline shift was similar between groups. Rate of reoperation did not differ (4.7 vs 8.7%, P = .61). CONCLUSION: Rapid reinitiation of AT after MMA embolization for CSDH leads to higher rates of recurrence with similar rates of reoperation. Care must be taken when initiating antithrombotics after treatment of CSDH with MMA embolization

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    Exploring the potential of rapid evaporative ionization mass spectrometry (Intelligent Knife) for point-of-care testing in aortic surgery

    Get PDF
    Abstract OBJECTIVES Many intraoperative decisions regarding the extent of thoracic aortic surgery are subjective and are based on the appearance of the aorta, perceived surgical risks and likelihood of early recurrent disease. Our objective in this work was to carry out a cross-sectional study to demonstrate that rapid evaporative ionization mass spectrometry (REIMS) of electrosurgical aerosol is able to empirically discriminate ex vivo aneurysmal human thoracic aorta from normal aorta, thus providing supportive evidence for the development of the technique as a point-of-care test guiding intraoperative surgical decision-making. METHODS Human aortic tissue was obtained from patients undergoing surgery for thoracic aortic aneurysms (n = 44). Normal aorta was obtained from a mixture of post-mortem and punch biopsies from patients undergoing coronary surgery (n = 13). Monopolar electrocautery was applied to samples and surgical aerosol aspirated and analysed by REIMS to produce mass spectral data. RESULTS Models generated from REIMS data can discriminate aneurysmal from normal aorta with accuracy and precision of 88.7% and 85.1%, respectively. In addition, further analysis investigating aneurysmal tissue from patients with bicuspid and tricuspid aortic valves was discriminated from normal tissue and each other with accuracies and precision of 93.5% and 91.4% for control, 83.8% and 76.7% for bicuspid aortic valve and 89.3% and 86.0% for tricuspid aortic valve, respectively. CONCLUSIONS Analysis of electrosurgical aerosol from ex vivo aortic tissue using REIMS allowed us to discriminate aneurysmal from normal aorta, supporting its development as a point-of-care test (Intelligent Knife) for guiding surgical intraoperative decision-making. </jats:sec

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    Middle Meningeal artery Embolization of Septated Chronic Subdural Hematomas

    Get PDF
    INTRODUCTION: Middle meningeal artery embolization (MMAE) has emerged as a promising new treatment for patients with chronic subdural hematomas (cSDH). Its efficacy, however, upon the subtype with a high rate of recurrence-septated cSDH-remains undetermined. METHODS: From our prospective registry of patients with cSDH treated with MMAE, we classified patients based on the presence or absence of septations. The primary outcome was the rate of recurrence of cSDH. Secondary outcomes included a reduction in cSDH thickness, midline shift, and rate of reoperation. RESULTS: Among 80 patients with 99 cSDHs, the median age was 68 years (IQR 59-77) with 20% females. Twenty-eight cSDHs (35%) had septations identified on imaging. Surgical evacuation with burr holes was performed in 45% and craniotomy in 18.8%. Baseline characteristics between no-septations (no-SEP) and septations (SEP) groups were similar except for median age (SEP vs no-SEP, 72.5 vs. 65.5, p CONCLUSION: MMAE appears to be equal to potentially more effective in preventing the recurrence of cSDH in septated lesions. These findings may aid in patient selection
    • …
    corecore