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Summary
The molecular events underlying the progression of T-lymphoblastic lymphoma (T-LBL) to acute
T-lymphoblastic leukemia (T-ALL) remain elusive. In our zebrafish model, concomitant
overexpression of bcl-2 with Myc accelerated T-LBL onset while inhibiting progression to T-ALL.
The T-LBL cells failed to invade the vasculature and showed evidence of increased homotypic
cell-cell adhesion and autophagy. Further analysis using clinical biopsy specimens revealed
autophagy and increased levels of BCL2, S1P1 and ICAM1 in human T-LBL compared to T-
ALL. Inhibition of S1P1 signaling in T-LBL cells led to decreased homotypic adhesion in vitro
and increased tumor cell intravasation in vivo. Thus, blockade of intravasation and hematologic
dissemination in T-LBL is due to elevated S1P1 signaling, increased expression of ICAM1 and
augmented homotypic cell-cell adhesion.
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Significance

Thymic lymphomas are closely related to thymic leukemias, but it is unknown why T-
LBL remains highly localized as a mediastinal mass in some patients while disseminating
rapidly as T-ALL in others. Here we demonstrate that T-LBL cells with increased BCL2
levels possess a distinct cellular phenotype, including impaired vascular invasion,
metabolic stress and autophagy. This T-LBL phenotype results from elevated levels of
S1P1 and ICAM1 that promote homotypic cell-cell adhesion and block intravasation. Our
results show that AKT activation is one mechanism that can overcome the T-LBL block
in intravasation, suggesting that PI3K-AKT inhibitors may be helpful in preventing T-
LBL cells from acquiring the ability to invade and disseminate.

Introduction
T-lymphoblastic lymphoma (T-LBL) and acute T-lymphoblastic leukemia (T-ALL) are
distinct clinical presentations of related malignant diseases that arise in developing
thymocytes. The clinical distinction between T-ALL and T-LBL is based on the extent of
tumor cell dissemination within the bone marrow and peripheral blood. T-LBL patients
typically present with a large anterior mediastinal mass and little evidence of dissemination.
However, stage IV T-LBL disease is characterized by distant dissemination through the
blood and up to 25% bone marrow cellularity consisting of T lymphoblasts. Cases are
classified as T-ALL if the T lymphoblasts comprise more than 25% of the bone marrow
cells at presentation, regardless of the extent of thymic or nodal involvement. About one
third of T-ALL cases present with a mediastinal mass, while the remaining two thirds lack
radiographic evidence of a mediastinal mass and generally have high numbers of circulating
T- lymphoblasts (Sen and Borella, 1975; Goldberg et al., 2003). Although T-LBL and T-
ALL share many morphologic, immunophenotypic, and genotypic features (Cairo et al.,
2005), a recent comparison of T-ALL versus T-LBL gene expression profiles (Raetz et al.,
2006) suggests intrinsic differences in growth regulatory pathways that may distinguish
between these two malignancies and could be exploited for the development of T-ALL- and
T-LBL-specific therapies.

MYC is a potent proto-oncogene that is aberrantly expressed in a broad spectrum of human
cancers including leukemia and lymphoma (Nesbit et al., 1999; Pelengaris et al., 2002). In
T-ALL and T-LBL, aberrant expression of MYC generally occurs downstream of activated
NOTCH signaling. Activating mutations in the NOTCH1 gene have been identified in
40-60% of human T-ALL and 43% of human T-LBL cases, indicating that deregulated
NOTCH1 signaling is major contributor to the pathogenesis of both types of T-
lymphoblastic malignancies (Weng et al., 2004; Ferrando et al., 2002; Ferrando, 2009; Park
et al., 2009; Pear and Aster, 2004; Shimizu et al., 2007; Weng et al., 2006; Palomero et al.,
2006; Sharma et al., 2006). Since MYC activates both cell proliferative and apoptotic
pathways, tumor cells acquire additional genetic lesions to escape cell death (Meyer et al.,
2006; Dang et al., 2005; Asker et al., 1999; Vousden, 2002). Either inactivation of the p53
pathway or overexpression of Bcl-2 can cooperate with Myc to induce lymphomagenesis in
mice (Nilsson and Cleveland, 2003; Hoffman et al., 2002; Pelengaris et al., 2002; Strasser et
al., 1990; Eischen et al., 1999).

To identify the critical molecular changes that distinguish T-LBL from T-ALL, we used a
zebrafish model to study the fate of transformed thymocyte progenitors. In this system, the
vast majority of transgenic fish develop T-LBL progressing rapidly to T-ALL (Langenau
2003Feng et al., 2007), analogous to cases of human T-ALL that present with both a
mediastinal mass and high numbers of circulating lymphoblasts. In this report we exploit
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this zebrafish model to reveal genetic differences between T-LBL and T-ALL and to
uncover the underlying cellular and molecular basis for the divergent clinical pathologies of
human T-LBL localized to the mediastinum compared with widely disseminated human T-
ALL.

Results
Bcl-2 Accelerates the Onset of Myc-induced T-LBL in Zebrafish

To determine whether bcl-2 overexpression accelerates the development of Myc-induced T-
LBL/ALL in our zebrafish model, we bred double-transgenic (rag2-LDL-EGFP-
mMyc;rag2-EGFP-bcl-2) heterozygotes with zebrafish transgenic for Cre regulated by the
heat-shock protein 70 promoter (hsp70-Cre), and then monitored disease onset for 129 days
after inducing Cre expression in the progeny. Despite their similar levels of Myc protein
(Figure S1A), the triple-transgenic fish (Myc;Cre;bcl-2) developed T-LBL earlier and with a
higher penetrance than did their siblings, which expressed only Myc;Cre: mean latency, 76
± 27 (SD) days vs. 103 ± 17 days (P<0.0001; Figure 1A). By 129 days of life, 78% of the
triple transgenics but only 37% of the Myc;Cre transgenics had developed thymic tumors
(Figure 1A). Furthermore, when premalignant GFP-positive T-cells were assayed by
Annexin V staining, we found that bcl-2 expression did indeed inhibit apoptosis in these T-
cells (Figure S1B), providing a mechanism through which bcl-2 collaborates with Myc in
lymphomagenesis.

Progression of Myc-Induced T-LBL Is Inhibited by Bcl-2 Overexpression
Although bcl-2 overexpression strikingly accelerated the onset of Myc-induced T-LBL with
invasion into local structures (Figures 1A and 1F), progression of the thymic lymphomas to
disseminated leukemias was inhibited in these transgenics (Figures 1B and 1F-H), compared
with the Myc-only line (Figures 1B-E). By 261 days of life, only 24% of the Myc;Cre;bcl-2
fish with T-LBL had shown progression to T-ALL, in marked contrast to the nearly 100%
rapid dissemination rate in fish that expressed only EGFP-mMyc (P=0.0002; Figures 1B,
1D-E, and 1G-H). To further explore the differences in dissemination rates, we transplanted
equal numbers of GFP-sorted control thymocytes or lymphoma/leukemic cells
intraperitoneally into irradiated wild-type recipients. While nontransformed control rag2-
EGFP-bcl-2 thymocytes did not survive transplantation (data not shown), both Myc;Cre and
Myc;Cre;bcl-2 tumor cells were readily transplantable, as shown by EGFP-labeled tumor
cells in the abdomens of fish at 2 weeks post-transplantation (Figures 1I and 1K). T-LBL
cells from most Myc;Cre;bcl-2 transgenics remained localized in the abdomens of
transplanted recipients and did not metastasize to other regions (Figure 1L), while the
transplanted Myc;Cre tumor cells showed widespread dissemination by 6 weeks post-
transplantation (Figure 1J).

Bcl-2-overexpressing Lymphomas Are Defective in Vasculature Intravasation
To further examine the different fates of Myc;Cre versus Myc;Cre;bcl-2 tumor cells in vivo,
we studied tissues from sacrificed fish. The rag2-GFP fish were sectioned as controls and
stained with hematoxylin and eosin (H&E). The control group showed thymocytes residing
in the thymus, without local invasion into the gills or other perithymic structures (Figures
2A, 2E, and 2I). By contrast, both young (Figures 2B and 2F) and old (Figures 2C and 2G)
Myc;Cre;bcl-2 fish showed extensive local infiltration into the gill structures, operculum
and other regions surrounding the thymus, a finding confirmed by immunostaining for GFP
(data not shown). Interestingly, the malignant Myc;Cre;bcl-2 lymphoblasts extended from
the thymus along subepithelial interstitial spaces, but they failed to invade the vasculature
and were not evident in the nearby red blood cell-containing capillaries of the gills (Figures
2J-K). In Myc;Cre fish several months of age, lymphoblasts extensively invaded the
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perithymic region surrounding the gills (Figures 2D, 2H, and 2L), including the central
capillary network within the secondary gill lamellae (Figure 2L). As we have reported
(Langenau et al., 2003), these cells were also widely disseminated and invaded the tissues in
organ systems throughout the fish, including nonhematopoietic tissues such as distant
muscle, liver, intestine, and testis. Taken together, these results indicate that the
Myc;Cre;bcl-2 tumor cells arising in the majority of the transgenic fish are impaired in their
ability to disseminate into the vascular system from the thymus, although they are locally
invasive and disseminate by extension through contiguous interstitial spaces around the
thymus.

To further elucidate how bcl-2-overexpressing lymphoma cells disseminate by invasion
across tissue planes without intravasating into the microvasculature, we monitored the in
vivo behavior of lymphoma cells isolated from Myc;Cre and Myc;Cre;bcl-2 transgenic
zebrafish, by combining transplantation assays with in vivo confocal imaging. Due to the
incomplete excision of the loxp-dsRED2-loxp cassette from the Myc (rag2-Loxp-dsRED2-
Loxp-EGFP-mMyc) transgene (Feng et al., 2007), cells from Myc;Cre and Myc;Cre;bcl-2
tumors both express dsRED2 together with EGFP. The presence of dsRED2 allowed the
visualization of these tumor cells within the context of adult host fli1-EGFP;Casper fish,
which are transparent and express EGFP much stronger in the vasculature than do the tumor
cells, allowing lymphoma cell intravasation to be monitored in vivo. When equal numbers of
FACS-sorted Myc;Cre or Myc;Cre;bcl-2 T-LBL cells were transplanted into fli1-
EGFP;Casper fish, tumor cells were readily apparent at 6 days post-transplantation and
were assayed by confocal microscopy for dissemination and vascular intravasation. At that
time, many more Myc;Cre tumor cells relative to Myc;Cre;bcl-2 T-LBL cells had invaded
blood vessels (Figures 2M-R), despite the fact that most of the latter cells were in close
proximity to the vessels (Figures 2P-R). To quantify this effect, we calculated the
percentages of intravasating Myc;Cre;bcl-2 and Myc;Cre lymphoma cells: mean 0.56 ± 0.80
(SD) versus 1.66 ± 0.99, respectively (n=17 and 20; (P<0.0001). Unlike the majority of
transplanted Myc;Cre;bcl-2 tumor cells, those expressing Myc;Cre circulated in blood
vessels throughout the animal at 12 days post-transplantation and were associated with a
large tumor burden. Although difficult to quantify, the transplanted Myc;Cre;bcl-2 T-LBL
cells also showed increased formation of cellular aggregates (see Figures 2Q-R).

Zebrafish T-LBL Cells Overexpressing Bcl-2 Undergo Autophagy
To further examine the difference in lymphoma cells with or without bcl-2-overexpression,
we compared the morphology and cell cycle status of GFP-sorted thymocytes from i) GFP
control (rag2-GFP), ii) bcl-2 control (rag2-EGFP-bcl-2), iii) Myc;Cre;bcl-2 and iv)
Myc;Cre transgenic fish (Figures S2A-D). The malignant thymocytes expressing the rag2-
EGFP-bcl-2 transgene were smaller than cells transformed by the Myc transgene alone
(Figures S2C-D and S7N). Moreover, cell cycle analysis revealed that T-LBL cells from the
Myc;Cre;bcl-2 transgenic fish had a much lower proliferative fraction (0.65% in S-phase)
compared with control GFP (9.31%), bcl-2 (10.27%) thymocytes or with tumor cells from
the Myc;Cre transgenic fish (10.8%) (Figure S2E). These characteristics could reflect
metabolic stress and autophagy, so Myc;Cre and Myc;Cre;bcl-2 lymphoma cells were
assessed by transmission electron microscopy. Interestingly, T-LBL cells overexpressing
bcl-2 had significantly more autophagosomes/autolysophagosomes than Myc;Cre tumor
cells: 2.7 ± 2.0 (SD) versus 0.23 ± 0.58 per cell section (P<0.0001; Figure 3A-E).

Microtubule-associated protein 1 light chain 3 (LC3), served as a marker for autophagy
(Kabeya et al., 2000) and its active form, Lc3-II, was abundant in Myc;Cre;bcl-2 lymphoma
cells but not in Myc;Cre lymphoma cells (Figure 3F). Myc;Cre tumors also failed to express
the precursor form, Lc3-I, consistent with the LC3 gene being transcriptionally upregulated
only when cells undergo autophagy (Donati et al., 2008; Yasmeen et al., 2003). These
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findings show that autophagy is triggered as a catabolic survival mechanism specific to
Myc;Cre;bcl-2 tumor cells.

To test whether autophagy contributed to the inability of zebrafish bcl-2-overexpressing
lymphoma cells to disseminate, we treated control wild-type fish, and Myc;Cre and
Myc;Cre;bcl-2 transgenic fish with the autophagy inhibitor chloroquine (CQ), which was
well-tolerated by both wild-type and tumor-bearing fish at a concentration up to 100 μM. As
expected (Amaravadi et al., 2007), autophagosomes/autolysosomes could not metabolize
their contents, resulting in their significantly increased numbers in CQ-treated T-LBL cells
compared to controls (mean: 17.9 ± 10.7 (SD) vs. 5.8 ± 3.8, P<0.0001; Figures S3A-E).
However, none of the T-LBL cells in Myc;Cre;bcl-2 fish disseminated over 12 weeks of
treatment with CQ (Figures S3F-I), indicating that autophagy is not responsible for the lack
of T-LBL cell dissemination.

AKT Activation Promotes the Progression of T-LBL to T-ALL in Zebrafish
AKT activation by phosphorylation is known to promote T-cell migration and nutrient
uptake, to relieve metabolic stress, and to suppress autophagy (Sotsios and Ward, 2000;
Lum et al., 2005), suggesting its involvement in the progression of T-LBL to T-ALL. We
therefore examined the levels of phospho-Akt (Ser473p-Akt) in lymphoma cells in two
separate experiments with i) Myc;Cre;bcl-2 transgenic fish in which tumors remained
localized as T-LBL (n=5); ii) leukemic cells from the 24% of Myc;Cre;bcl-2 fish in which
the cells disseminated as T-ALL (n=6); and iii) leukemic cells expressing Myc;Cre alone
(n=6; Figure 4A and data not shown). In both experiments, there were striking increases in
Ser473p-Akt, indicating elevated levels of phosphorylated Akt in Myc;Cre;bcl-2 tumors that
had disseminated as T-ALL. This was in marked contrast to the low levels of Ser473p-Akt
observed in T-LBL tumor cells that remained confined locally around the thymus. Levels of
Ser473-p-Akt and Lc3-II (Figure 4A, lanes 6-8) were consistently low in the Myc;Cre
leukemic cells, suggesting that Akt activation was not required by these tumor cells to
promote intravasation and dissemination.

To test experimentally whether Akt activation can promote the progression of T-LBL to T-
ALL, we introduced a constitutively active, myristoylated murine Akt2 (Myr-Akt2) transgene
driven by the rag2 promoter into the Myc;Cre;bcl-2 transgenic fish by microinjection at the
1-cell stage. Tumor cells from all four fish tested with constitutive expression of Myr-Akt2
had increased Ser473p-Akt levels, as did one of the four fish without Myr-Akt2 expression
(Figure 4B). Constitutively activated Akt promoted more rapid onset of T-LBL in the Myc
transgenic fish with or without bcl-2 overexpression (Figure S4), and more rapid
dissemination of T-LBL to T-ALL in the Myc;Cre;bcl-2;Myr-Akt2 transgenic fish (Figures
4E-G). By 217 days of life, 85% of the Myc;Cre;bcl-2;Myr-Akt2 transgenic fish with T-LBL
had developed T-ALL, in marked contrast to only 30% of the Myc;Cre;bcl-2 transgenic fish
with T-LBL (Figure 4G). Dissemination was more rapid, as the earliest time that the
Myc;Cre;bcl-2;Myr-Akt2 transgenic fish developed T-ALL was 34 days of life, compared to
114 days for their Myc;Cre;bcl-2 siblings.

Human T-LBL Cells Undergo Autophagy
To test whether human T-LBL, but not T-ALL, lymphoblasts undergo autophagy, as
predicted by our zebrafish model, we performed western blot analysis to examine expression
of the autophagy protein LC3-I and its active LC3-II isoform (Kabeya et al., 2000; Donati et
al., 2008; Yasmeen et al., 2003). Relative to the T-ALL cases, the T-LBL cases showed high
levels of LC3-I and LC3-II (Figure 5A), indicating that human T-LBL lymphoblasts were
actively undergoing autophagy. We confirmed this finding by demonstrating higher levels of
another protein indicative of autophagy, BECLIN 1 (ATG6) (Cao and Klionsky, 2007),
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which is transcriptionally upregulated when cells undergo autophagy (Donati et al., 2008;
Cao and Klionsky, 2007; Yan et al., 2007), in T-LBL compared to T-ALL samples (Figure
5A). In autophagic cells, the LC3-II isoform is sequestered in autophagosomes, allowing its
subcellular localization to be detected by immunofluorescence assays (Kabeya et al., 2000).
LC3 was expressed at low diffuse levels in the cytoplasm of normal T-cells (Figures 5G and
5J) and of the lymphoblasts in 10 of 11 T-ALL bone marrow samples (Figures 5I and 5L;
Figure S5C). However, strong punctate LC3 staining was observed in 7 of 9 T-LBL cases
examined (Figures 5H and 5K; Figure S5C), further supporting subcellular sequestration of
LC3 and the specific induction of autophagy in human T-LBL but not T-ALL lymphoblasts.

Human T-LBL Cells Overexpress BCL2α, S1P1, and ICAM1
Our zebrafish data suggest that a difference in BCL2 expression may represent an important
distinction between human T-LBL and T-ALL. The human BCL2 protein has two isoforms
that are produced by alternatively spliced transcripts. The widely studied antiapoptotic
BCL2α isoform contains 239 amino acids and a hydrophobic carboxy-terminal
transmembrane domain (TM) (Figure S5A). This membrane anchor is lacking in the 205-
amino-acid BCL2β isoform (Figure S5A), which appears to lack antiapoptotic activity
(Tanaka et al.,1993). The zebrafish bcl-2 transgene used in this study is most similar to the
human BCL2α isoform.

To determine whether BCL2α is differentially expressed in primary human T-LBL and T-
ALL cells, we analyzed recently published RNA expression profiling results obtained from
9 T-LBL and 10 T-ALL samples (Raetz et al., 2006). Expression of BCL2α in human T-
LBL was significantly higher than that in T-ALL (Figure 5C and Table S1). To determine if
T-LBL samples had higher BCL2α protein levels, we extracted proteins from six T-LBL and
seven T-ALL primary patient samples and subjected them to Western blot analysis. The
Du528 T-ALL cell line, which expresses both BCL2α and BCL2β was used as a control to
show the relative migration of the two isoforms (Figure S5B). Analysis of this Western blot
(Figure S5B) showed that BCL2α levels were significantly higher (P=0.038) in T-LBL
versus T-ALL samples (BCL2α/ACTIN ratio mean: 0.29 ± 0.07 (SD) vs. 0.09 ± 0.02; Figure
5D), while there were no detectable differences in the expression levels of other
antiapoptotic proteins, such as MCL1 and BCLXL (Figure 5A and Table S1).

To extend our analysis of BCL2 expression in lymphoblastic lymphoma cells, we performed
immunohistochemical analyses of normal and T-LBL human thymic tissue biopsies,
together with T-ALL specimens from bone marrow biopsies (Figure 6). While both T-LBL
and T-ALL samples contained mature T-cells with strong BCL2 expression, the normal
thymic architecture in the T-LBL samples was clearly disrupted, and 7 of 11 of these
samples showed high levels of BCL2 expression in the tumor cells (Figures 6B, 6E and S6).
By contrast, BCL2 levels were essentially undetectable in the lymphoblasts from 10 of 11 T-
ALL samples (Figures 6C and 6F). Our analysis demonstrates that BCL2 levels are
significantly higher in human T-LBL compared to those of T-ALL cells, a finding that is
consistent with the predictions of our zebrafish model. To address whether the difference in
BCL2 levels between T-LBL and T-ALL might reflect altered stages of T-cell development,
we performed immunohistochemical assays of the CD3, CD4, and CD8 surface antigens, but
did not identify any differences in the patterns of expression between these two disease
types (see Table S2).

Although increased expression of BCL2 in T-LBL cells may contribute to the onset of
lymphoma, it does not explain why in many of these cases the transformed cells fail to
invade the vasculature and disseminate. To address this question, we analyzed the published
gene expression data of Raetz and coworkers using Gene Set Enrichment Analysis (GSEA)
to see if the curated gene sets for integrin mediated cell adhesion, cell adhesion molecules
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and leukocyte transendothelial migration were differentially expressed in T-LBL versus T-
ALL (Raetz et al., 2007; Mootha et al., 2003). Although GSEA analysis failed to reveal
significant enrichment for any of these three gene sets
(http://www.broadinstitute.org/gsea/msigdb/index.jsp) between T-LBL (n=9) and T-ALL
(n=10) patient samples, some individual genes within these gene sets did exhibit differential
expression. After including additional candidate genes reported in the literature, we focused
our efforts on 6 proteins involved with T-lymphocyte adhesion and migration, which
included S1P1, ICAM1 (the downstream target of S1P1), and its receptor LFA1, E2 (CD99),
N-cadherin, and E-cadherin (Petrie and Zuniga-Pflucker, 2007; Rosen and Goetzl, 2005a;
Makgoba et al., 1988; Bernard et al., 1995; Kawamura-Kodama et al., 1999). While our
Western blot analysis failed to detect significant differences in the expression levels of 4 of
the 6 molecules tested, significant increases in S1P1 and ICAM1 levels were observed in T-
LBL relative to T-ALL cells: S1P1/ACTIN ratio, mean 2.96 ± 1.90 (SD) vs. 0.77 ± 1.19,
P=0.04 (Figures 5A and 5E); ICAM1/ACTIN ratio, mean 1.67 ± 0.96 (SD) vs. 0.07 ± 0.09,
P=0.007 (Figures 5B and 5F). These results are interesting because S1P1 signaling promotes
homotypic T cell adhesion and inhibits thymocyte emigration and endothelial intravasation,
at least in part through S1P1's ability to upregulate ICAM1 levels (Makgoba et al., 1988;
Rosen et al., 2009b; Lin et al., 2007).

To extend our Western blot results to additional cases, we examined S1P1 expression levels
by immunohistochemical analysis of normal thymus, T-LBL tumor biopsies and T-ALL
bone marrow biopsies. As shown in Figures 6A and 6D, BCL2 is normally not detectable in
immature thymocytes in the thymic cortex, and then is markedly upregulated to promote the
survival of more mature single-positive thymocytes in the medulla that are ready to egress
via the circulation. By contrast, S1P1 is expressed by cortical thymocytes and is
downregulated as more mature thymocytes traffic to the medulla (Figures 6G and 6J). In the
T-LBL cases, S1P1 is expressed at levels comparable to the high levels normally expressed
by immature cortical thymocytes that are retained in the thymus (Figures 6H and 6K, Figure
S6, and Table S2), while BCL2 levels are aberrantly upregulated similar to more mature
thymocytes in the thymic medulla (Figures 6B and 6E, and Table S2). By contrast, only a
small subset T-ALL cells expressed detectable levels of S1P1 (Figures 6I and L, Figure S6,
P=0.03). These results show that the high S1P1 levels observed on human T-LBL cells most
closely resemble the levels that found on immature normal cortical thymocytes that are
retained in the thymus, while human T-ALL lymphoblasts with low S1P1 levels resemble
those that are able to emigrate from the thymus into the circulation.

Bcl-2-Overexpressing T-LBL Cells Exhibit Increased Aggregation That Can Be Overcome
by Akt Activation or S1P1 Inhibition

To gain further insight into the failure of T-LBL cells to disseminate in Myc;Cre;bcl-2
transgenic fish, we analyzed the phenotypic behavior of these sorted tumor cells in vitro.
Tumor cells from both Myc;Cre and Myc;Cre;bcl-2 transgenic fish were unable to survive in
vitro without the support of a zebrafish kidney stromal cell line (ZKS) (Stachura et al., 2009;
data not shown). Growing on a monolayer of ZKS cells, T-LBL cells overexpressing bcl-2
and Myc survived far better than did their counterparts overexpressing Myc alone, under
both normal and hypoxic conditions. Compared to T-LBL cells overexpressing Myc alone,
which die by 12 days in culture, T-LBL cells overexpressing bcl-2 and Myc can routinely
survive for over 2 months. The Myc;Cre;bcl-2 lymphoma cells were significantly smaller
than Myc;Cre cells under both normal (mean ± SD cell diameter, 1.79 ± 0.59 μm vs. 3.33 ±
1.50 μm) and hypoxic (1.62 ± 0.55 μm vs. 3.30 ± 1.46μm) conditions (P<0.0001, Figure
S7N), consistent with their autophagic state, which may promote their survival under both in
vivo and in vitro conditions. Myc;Cre cells appeared large and apoptotic, expressed the
apoptotic marker Annexin V on their surface (Figure S7P), and were noticeably less healthy
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after 8 days in culture, particularly under hypoxic conditions (Figure S7L). These
observations demonstrate that Myc;Cre;bcl-2 T-LBL cells have a survival advantage over
Myc;Cre cells.

Interestingly, when cultured in vitro, single FACS-sorted lymphoma cells from the majority
of Myc;Cre;bcl-2 transgenic fish formed aggregates (over 10 cells per aggregate) in standard
(Figures 7C and 7F) as well as hypoxic (Figure S7F) culture conditions. In contrast,
malignant cells from all Myc;Cre transgenic fish failed to form aggregates under the same
conditions (Figures 7B and 7F). The number of Myc;Cre;bcl-2 T-LBL cell aggregates
increased over time and was not dependent upon initial plating densities (Figures S7A-E and
S7M), compared to Myc;Cre lymphoma cells (Figure S7G-K). Furthermore, the numbers of
viable lymphoma cells did not significantly increase over a week in culture (Figure S7O),
indicating that the formation and increased numbers of aggregated Myc;Cre;bcl-2 T-LBL
cells was not due to increased proliferation. These cells survived over 2 months in vitro and
still retained the ability to aggregate (data not shown).

To examine whether the T-LBL aggregation phenotype could be overcome by Akt
activation, we cultured tumor cells from both the 24% of Myc;Cre;bcl-2 transgenic fish with
endogenous Akt activation that progressed to T-ALL and the Myc;Cre;bcl-2;Myr-Akt2
transgenic fish. Importantly, leukemic cells from most of the Myc;Cre;bcl-2 or
Myc;Cre;bcl-2;Myr-Akt2 fish failed to aggregate (Figures 7D-F), as compared to the T-LBL
cells from the 76% of Myc;Cre;bcl-2 transgenic fish that remained localized, indicating that
Akt activation is able to overcome the aggregating properties of Myc;Cre;bcl-2 lymphoma
cells and that the abrogation of in vitro aggregation appears to be linked to the cells' capacity
to disseminate.

Because S1P1 was overexpressed by human T-LBL cells, and the ligand-binding domain of
zebrafish s1p1 is also highly conserved, we tested whether the S1P1 pathway regulated the
cellular aggregation phenotype of zebrafish Myc;Cre;bcl-2 T-LBL cells, using W146, a
specific S1P1 antagonist (Sanna et al., 2006), to treat malignant cells from transgenic fish.
While W146 treatment had no detectable effect on the malignant cells from Myc;Cre fish
(data not shown), it caused a marked reduction in the aggregation of Myc;Cre;bcl-2 T-LBL
cells without affecting cell survival (Figures 7G-K; data not shown). These results indicate
that the homotypic cell-cell aggregation of the bcl-2-overexpressing T-LBL cells depends
upon S1P1 signaling.

S1P1 Antagonist Treatment Promotes the Intravasation of Bcl-2-overexpressing T-LBL
Cells in Vivo

To establish whether the S1P1 signaling pathway regulates the ability of Myc;Cre;bcl-2
lymphoma cells to intravasate into the microvasculature, we treated Myc;Cre;bcl-2
transplants in vivo with the W146 S1P1 inhibitor (Figure 8A). Twelve days after
transplantation, either a control vehicle solution or the W146 inhibitor was injected into the
host Fli1-EGFP;Casper fish at the cell transplantation site. Three days later, the fish were
examined by confocal microscopy and scored for dissemination and intravasation. Minimal
intravasation of the transplanted cells was observed in the vehicle-treated fish (Figures 8B-
D), while the W146-treated fish showed significantly higher numbers of intravasating tumor
cells (Figures 8E-G; mean ± SD intravasation score, 0.89 ± 0.83 versus 2.07 ± 0.86,
respectively, P<0.0001). Similar to what was observed previously (Figures 2Q and 8C), the
transplanted Myc;Cre;bcl-2 T-LBL cells formed aggregates in vivo in the control-treated
fish, while the W146 treatment led to a dissociation of the cell aggregates (Figure 8F). These
results indicate that inhibition of S1P1 signaling can restore the capacity for Myc;Cre;bcl-2
lymphoma cells to disaggregate and intravasate into the vasculature in vivo, thus implicating
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high S1P1 levels in the blockade of dissemination observed in zebrafish T-LBL and by
extension in human patients with this disease.

Discussion
Our studies in zebrafish define the cellular and molecular differences between human T-
LBL and T-ALL, providing for a biological basis for the different clinical presentations of
these two T-cell malignancies. The results indicate that aberrant overexpression of BCL2
together with MYC accelerates the onset of malignant transformation by suppressing Myc-
induced apoptosis (Strasser et al., 1990), while elevated S1P1 and ICAM1 levels promote
homotypic cell adhesion through binding to LFA1, associated with a blockade of
intravasation and thymic egress. The transformed T-LBL lymphoblasts that are unable to
intravasate and undergo hematologic dissemination remain trapped in the thymic region,
where they proliferate to the capacity of their local nutrient supply and induce the autophagy
program in response to metabolic stress. Conversely, MYC-stimulated lymphoblasts with
low levels of BCL2 expression appear to undergo a more protracted multistep transformation
process that may involve activation of alternative cell survival programs, as well as
molecular pathways that promote dissemination outside of the thymic environment. These
T-ALL lymphoblasts rapidly undergo hematologic dissemination to nutrient rich
environments throughout the host, thus avoiding metabolic stress and the induction of
autophagy.

Thymocytes express a number of adhesion molecules, including N-cadherin, E-cadherin,
ICAM1, and LFA1, during specific stages of maturation that are associated with specific
functions including thymocyte emigration and intravasation (Petrie and Zuniga-Pflucker,
2007; Boyd et al., 1988). The regulated expression of ICAM1 controls the balance of
homotypic cell-cell adhesion and heterotypic adhesion to vascular endothelial cells, which
modulates the intravasation process (Boyd et al., 1988; Guo et al., 2009; Gares and Pilarski,
2000). Recent evidence supports the contribution of S1P1 function to the process of
thymocyte intravasation through its regulation of ICAM1 levels (Lin et al., 2007), and S1P1
agonists such as SEW2874 have been shown to increase S1P1 signaling in the thymus and
inhibit mature thymocyte egress (Sanna et al., 2006). Consistent with these data, we show
that T-LBL cases overexpressing BCL-2 have high S1P1 levels mirroring those of immature
cortical thymocytes that do not emigrate from the thymus (Figure 6G). The mechanism
underlying this association is uncertain, but it does not appear to be solely dependent on the
state of thymocyte differentiation, since cases of both T-ALL and T-LBL can present with
cell surface markers indicating arrested T-cell development at all maturation stages (Crist et
al., 1988). Our experiments also show that the W146 S1P1 inhibitor reduces homotypic
thymocyte cell-cell adhesion and implicate the loss of homotypic cell-cell adhesion in the
ability of T-LBL cells to intravasate in our in vivo transplantation assays. The evidence of
elevated S1P1 and ICAM1 expression in human T-LBL cells, together with evidence for
S1P1-dependent cell aggregation in vitro and in vivo, strongly support a role of homotypic
cell adhesion mediated through elevated ICAM1, in regulating T-LBL intravasation and
subsequent hematologic dissemination.

Our results suggest that the induction of autophagy is a consequence rather than a cause of
the inability of malignant T-lymphoblasts to disseminate in our zebrafish model. First, when
zebrafish Myc;Cre;bcl-2 T-LBL cells were cultured in vitro, their survival indicated that
their inability to disseminate could not be attributed to their inability to survive outside the
thymic niche. Second, inhibitors of autophagy failed to restore the ability of T-LBL cells to
disseminate.
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While low levels of activated Akt were observed in Myc;Cre;bcl-2 zebrafish with localized
T-LBL lymphomas, the Myc;Cre;bcl-2 lymphomas that progressed to T-ALL possessed
high levels of phospho-Akt (Ser 473-p-Akt), suggesting that AKT activation provides a
mechanism allowing bcl-2-overexpressing cells to disseminate. Furthermore, the expression
of a constitutively active form of murine Akt2 (Myr-Akt2) in Myc;Cre;bcl-2 transgenic
zebrafish promoted rapid dissemination of the disease while lymphoblasts overexpressing
Akt failed to aggregate in vitro, further supporting the association between activated Akt
signaling, the loss of cell adhesion and T-ALL dissemination.

Human T-ALL and T-LBL are considered to represent different clinical presentations of the
same disease that are often treated with identical treatment regimens. Our studies suggest
that different molecular and cell biologic properties may render these diseases uniquely
susceptible to different types of targeted therapies. Thus in T-LBL patients, combination of
BCL2 and AKT inhibitors could promote lymphoblast death while blocking pathways that
lead to lymphoblast escape and dissemination. Such approaches would likely have little
efficacy for the majority of patients with T-ALL, who have low levels of BCL2 expression
and lack evidence of activation of autophagy. Our studies also suggest that BCL2 levels,
AKT phosphorylation, and LC3 and BECLIN1 levels should be carefully analyzed in future
clinical trials, to determine whether these biomarkers predict clinical response and implicate
pathways for targeted therapy.

Experimental Procedures
Fish Husbandry

Zebrafish husbandry was performed as described (Westerfield, 1994) in the Dana-Farber
zebrafish facility, in accord with our ACUC-approved protocol.

Overexpression of Myc, bcl-2, and Myr-Akt2 in Zebrafish Lymphocytes, Tumor Screen, and
Fish Genotyping

To test the cooperative effect of bcl-2 and mMyc, we bred double-transgenic fish, rag2-
EGFP-bcl-2;rag2-LDL-EGFP-mMyc, to homozygous hsp70-Cre fish; To overexpress Myr-
Akt2 in lymphocytes, we injected the ISceI-Rag2-Myr-Akt2-ISceI construct with the I-SceI
meganuclease into one-cell-stage embryos from the same breeding scheme described above.
All resulting progeny were heat-shocked and raised, monitored for T-LBL onset and
genotyped as described (Feng et al., 2007). Thymocytes were dissected for DNA extraction
and genotyped from fish injected with the ISceI-rag2-Myr-Akt2-ISceI construct. Genotyping
primer information is included in Supplemental Experimental Procedures.

Analysis of Zebrafish Lymphoma and Leukemic T cells
Control (from rag2-GFP and rag2-EGFP-bcl-2) or transformed T cells (from Myc;Cre,
Myc;Cre;bcl-2 or Myc;Cre;bcl-2;Myr-Akt2) were collected under a UV-dissection scope
(Leica) and sorted on the basis of dsRED2/GFP expression. The sorted cells were subjected
to: 1) transplantation into recipients (0.7 million cells per fish) as described (Langenau et al.,
2005); 2) electron microscopic analysis to determine the presence and number of
autophagosomes and autolysophagosomes per cell section (Nine to 15 different cell sections
were obtained for each Myc;Cre and Myc;Cre;bcl-2 fish); or 3) in vitro culture to assay
aggregation properties (See Supplemental Experimental Procedures for details).

Small Molecule Treatment and Confocal Imaging
The S1P1 antagonist W146 or the control vehicle was added to the cultured dsRED2/GFP-
sorted lymphoma cells and cell aggregation was assayed as described in the Supplemental
Experimental Procedure section. For in vivo treatment, W146 or vehicle was injected into
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the host Fli1-EGFP;Casper fish that had received Myc;Cre;bcl-2 lymphoma cells.
Transplant recipients were examined for EGFP (blood vessels) and dsRED2 (tumor cells) by
confocal imaging. Each image was scored on a 0 to 3 scale that estimated the fraction of
tumor cells contained within a blood vessel, as follows: 0=no cells in blood vessels,
1=≤25% of cells in blood vessels, 2=25-75% in blood vessels, and 3=100% in blood vessels.

Patient Samples
Diagnostic bone marrow specimens were collected with informed consent and with approval
of the Dana-Farber Cancer Institute Institutional Review Board from children with T-ALL
enrolled in Dana-Farber Cancer Institute clinical trials for pediatric ALL. T-LBL diagnostic
specimens were removed at surgery from patients diagnosed at Children's Hospital Boston
who gave informed consent for use of anonymized surgical specimens for research purposes
after all clinically relevant evaluations were performed, with approval of the Children's
Hospital Boston Institutional Review Board. All samples are reported by arbitrary Sample
ID numbers without linked identifiers (Table S2) and were analyzed with approval of the
Dana-Farber Cancer Institute Institutional Review Board. Mononuclear tumor cells were
isolated from T-ALL bone marrow specimens by Ficoll-Hypaque density centrifugation.
The diagnosis of T-ALL or T-LBL was made by each institution's pathologists and
clinicians based on criteria of the World Health Organization.

Western Blot Analysis
The primary antibodies included anti-BCL2, anti-CD3, anti-CD4, and anti-CD8 (Santa
Cruz), anti-BCLXL (BD Biosciences), anti-MCL1 (BD Biosciences), anti-LC3 (MBL
International Co.), anti-LC3β (Abcam), anti-BECLIN1 (ANASPEC Inc.), anti-S1P1 (Novus
Biologicals), anti-AKT, anti-phosph Ser473-AKT, anti-ICAM1, anti-N-Cadherin, anti-E-
Cadherin (Cell Signaling), anti-LFA1 (LifeSpan Biosciences), and anti-ACTIN (Sigma)
antibodies. Secondary antibodies included horseradish peroxidase-conjugated anti-mouse or
anti-rabbit antibodies (Pierce). Autoradiographs were either exposed directly to CL-
exposure film (Pierce) and then scanned with a MICROTEK Deskscan or were imaged with
a G:BOX chemi HR16 device (Syngene) and a CCD camera, and then subjected to analysis
with Syngene genetool software.

Immunohistochemistry and Immunofluorescence Staining
See Supplemental Experimental Procedures for detailed descriptions.

Statistical Analysis
Kaplan-Meier analysis and the log-rank test were used to compare times to T-LBL or T-
ALL onset among groups of fish. The exact Wilcoxon rank-sum statistic was used to
compare aggregates over free cells among lymphoma and leukemic cells from different
transgenic fish. Fisher's exact test was used to analyze differences in BCL2α, LC3, and
CD3/CD4/CD8 staining in clinical samples of T-LBL versus T-ALL lymphoblasts. Student's
t test was used to analyze differences in EGFP-mMyc levels, annexin V positive cells, S-
phase cells, cell size, autophagosome number in Myc;Cre versus Myc;Cre;bcl-2 tumor cells,
control- or chloroquine-treated Myc;Cre;bcl-2 tumor cells, the BCL2/ACTIN, S1P1/ACTIN,
and ICAM1/ACTIN protein ratio, and the percentage of S1P1-positive-cells of patient T-
LBL samples versus T-ALL samples. Student's t test was also used to analyze differences in
W146-treatments for zebrafish tumor cells in cell culture and the intravasation scores
between Myc;Cre and Myc;Cre;bcl-2 transplanted lymphoma cells, or between the vehicle
and W146-treated Myc;Cre;bcl-2 lymphoma cells. P values that were equal to or less than
0.05 were considered statistically significant. P-values were not adjusted for multiple
comparisons.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Bcl-2 Promotes Onset but Inhibits the Progression of Myc-induced T-LBL in Zebrafish
(A) Rate of tumor onset in three transgenic zebrafish lines: hsp70-Cre;rag2-EGFP-bcl-2
(Cre;bcl-2) double-transgenic fish (n=31; green line), rag2-LDL-EGFP-Myc;hsp70-Cre
(Myc;Cre) double-transgenic fish (n=26; blue line), and rag2-LDL-EGFP-Myc;hsp70-
Cre;rag2-EGFP-bcl-2 (Myc;Cre;bcl-2) triple-transgenic fish (n=32; red line). (B) Rate of T-
LBL progression to T-ALL in Myc;Cre (n=13; blue line) versus Myc;Cre;bcl-2 (n=21; red
line) transgenic fish. (C-H) Localized GFP-labeled tumors first arose as T-LBL in Myc;Cre
(C; 112-day) and Myc;Cre;bcl-2 (F; 119-day) transgenic fish; widespread dissemination
leading to leukemia was seen within 11 weeks after T-LBL onset in Myc;Cre fish (D,E), but
not in Myc;Cre;bcl-2 triple transgenics (G,H). (I-L) GFP-positive T-LBL tumor cells (n=5
per group) transplanted into the peritoneum of irradiated wild-type hosts. Tumor cells from
the Myc;Cre double-transgenic fish disseminated rapidly (I-J), while those from the
Myc;Cre;bcl-2 triple-transgenics remained localized (K-L). Scale bar for panels C-H and I-L
= 1 mm. See also Figure S1.
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Figure 2. Zebrafish T-Lymphoblasts Overexpressing Bcl-2 Spread Locally but Fail to
Intravasate into Vasculature
(A,E,I) T cells in a control fish are restricted to the thymus above the gill arches and
underneath the operculum (n=3). (B,C,F,G,J,K) GFP and dsRED2-positive tumor cells
(arrowheads; F,G) in the Myc;Cre;bcl-2 fish invade tissues outside the thymus and infiltrate
local structures, including the primary lamellae (filaments) and cartilaginous gill rays by 2
months (B,F,J; n=3) but fail to invade vasculature by 10 months (C,G,K; n=3). By contrast,
GFP- and dsRED2-expressing cells of the Myc;Cre transgenic fish (D,H,L; n=3) enter
secondary lamellae that contain the capillary network (compare panels J-K with panel L,
arrows) and disseminate widely throughout the host, infiltrating distant muscle and fat
tissues by 6 months. Black arrowhead in panel A points to thymus (T) and the gill region is
indicated (G). Inserts in panels F, G, and H show enlargements of tumor cells. (M,N,O)
dsRED2-expressing lymphoma cells (N) from the Myc;Cre fish intravasate into EGFP-
labeled vasculature (M) of the transplant host (fli1-EGFP;Casper) by 6 day post-
transplantation (see arrowheads in O); (P,Q,R) In contrast, dsRED2-expressing lymphoma
cells (Q) from the Myc;Cre;bcl-2 fish fail to intravasate vasculature (P) of the transplant
hosts by 6 day post-transplantation (compare panel R with O). Note aggregates of the
Myc;Cre;bcl-2 lymphoma cells in panels Q and R. Scale bar for panels A-D = 200 μm; for
panels E-H = 50 μm; for panels I-L and M-R = 10 μm. See also Figure S2.
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Figure 3. Zebrafish Lymphoblasts Overexpressing Myc and Bcl-2 Undergo Autophagy
(A) Electron microscopic analysis rarely identified autophagosomes in tumor cells from
Myc;Cre transgenic fish. Mitochondria are indicated by arrows. (B-D) Thymic lymphoblasts
from Myc;Cre;bcl-2 triple-transgenics show prominent autophagosomes/
autolysophagosomes. Panel C is a magnified view of B (box). Arrows indicate double-
membrane autophagosomes containing cytoplasm and cytoplasmic organelles. An
autolysophagosome is shown in panel D (arrow). (E) Quantification of autophagosomes and
autolysophagosomes in Myc;Cre (solid bars) and Myc;Cre;bcl-2 (hatched bars) tumor cells
were harvested from three individual fish. From 9 to 15 different cells from each fish were
sectioned and analyzed. mean ± SD results from three individual fish are shown. (F)
Western blot analyses of the protein levels of EGFP-zbcl-2, Lc3-I, and Lc3-II in three
individual Myc;Cre and Myc;Cre;bcl-2 transgenic fish. Actin was used as a loading control
in each lane. Scale bars for panels A-D = 500 nm. See also Figure S3.
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Figure 4. Akt Activation Promotes the Progression of T-LBL to T-ALL in Myc;Cre;bcl-2
Transgenic Fish
(A) Western blot analysis of Lc3-I, Lc3-II, Ser473p-Akt, and Akt protein expression in
zebrafish Myc;Cre;bcl-2 lymphoma (two tumor samples) and leukemia (three tumor
samples) cells and in zebrafish Myc;Cre leukemia cells (three tumor samples). (B) Western
blot analysis of Ser473p-Akt and Akt expression in Myc;Cre;bcl-2 (n=4) and
Myc;Cre;bcl-2;Myr-Akt2 (n=4) zebrafish lymphomas. (C-F) Upon constitutive activation of
Myr-Akt2, Myc;Cre;bcl-2 transgenic fish rapidly progress from T-LBL (E; T-LBL onset at
20 days) to T-ALL (F; at 34 days), compared with the Myc;Cre;bcl-2 transgenic fish lacking
Myr-Akt2 expression (C-D). (G) Rate of T-LBL progression to T-ALL in Myc;Cre;bcl-2
transgenic fish (n=10; red) and Myc;Cre;bcl-2;Akt2 transgenic fish (n=20; purple). Actin
protein levels in panels A-B served as loading controls. Scale bars for panels C-F = 1 mm.
See also Figure S4.
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Figure 5. Human T-LBLs Undergo Autophagy and Overexpress BCL2α, S1P1 and ICAM1
(A) Western blot showing protein levels of MCL1, BCLXL, BCL2α, LC3-I, LC3-II,
BECLIN 1, S1P1, and ACTIN in six T-LBL versus six T-ALL human patient samples. (B)
Western blot showing the levels of ICAM1, LFA1, E-Cad, N-Cad, CD99, and ACTIN in 6
T-LBL versus 6 T-ALL human patient samples. (C) Gene expression profiling of human T-
LBL and T-ALL samples shows that BCL2α is expressed at high levels in T-LBL but not T-
ALL samples. (D) BCL2α versus ACTIN protein ratios demonstrating that BCL2α levels are
significantly higher in human T-LBL samples compared with T-ALL samples (n=6 for T-
LBL and n=7 for T-ALL; to view the Western blot, see Figure S5B). (E) S1P1 versus
ACTIN protein ratios demonstrating that S1P1 protein levels are significantly higher in
human T-LBL samples compared to T-ALL samples. (F) ICAM1 versus ACTIN protein
ratios demonstrating the significantly higher ICAM1 in human T-LBL samples compared to
T-ALL samples. (G-L) Immunofluorescent staining indicates the subcellular localization of
LC3 in normal thymus (G), T-LBL (H), and T-ALL (I) cells. (J-L) DAPI staining of the
cells shown in G-I, respectively. AU stands for arbitrary units. Bars denote median values.
Scale bars for panels G-L = 10 μm. See also Figure S5 and Table S1.
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Figure 6. Immunohistochemical analysis of BCL2 and S1P1 in human T-LBL and T-ALL
(A-F) Human BCL2 detected by immunohistochemistry in normal thymus (A,D) and in
samples from patients with T-LBL (B,E) or T-ALL (C,F). Panels D-F are magnified views
of boxes in A-C, respectively, and insets show individual cells including a mature thymocyte
with high BCL2 expression. (G-L) Human S1P1 detected by immunohistochemistry in
normal thymus (G,J) and in samples from patients with T-LBL (H,K) and T-ALL (I,L).
Panels J-L are magnified views of boxes in G-I, respectively. Note the reciprocal expression
pattern of BCL2 and S1P1 in the thymic cortex and medulla regions. The thick arrow in
panel (A,G) shows the thymic medulla region, while thin arrows in panels (D-F) indicate
mature thymocytes with high BCL2 expression, Arrowheads in panels (J-L) show the S1P1
expression on the cortical thymocytes or lymphoblasts. Scale bars for panels A-C and G-I =
0.5mm; D-F and J-L =50 μm. See also Figure S6 and Table S2.
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Figure 7. Bcl-2-Overexpressing T-LBL Cells Display Increased Aggregation That Can Be
Overcome by Akt Activation and S1P1 Inhibition in-vitro
(A) Schematic of the experimental strategy. (B-E) Brightfield images of lymphoma or
leukemic tumor cells in culture for 7 days on ZKS stroma: (B) Myc;Cre T-LBL, (C)
Myc;Cre;bcl-2 T-LBL, (D) Myc;Cre;bcl-2 T-ALL, or (E) Myc;Cre;bcl-2;Myr-Akt2 T-ALL
cells. (F) Quantification of aggregates over free cells for tumor cell culture on ZKS cells
under normal conditions for 7 days: Myc;Cre T-LBL (n=10), Myc;Cre;bcl-2 T-LBL (n=11),
Myc;Cre;bcl-2 T-ALL (n=13), or Myc;Cre;bcl-2;Myr-Akt2 T-ALL (n=11) transgenic fish.
(G-J) The formation of homotypic cell aggregation of Myc;Cre;bcl-2 T-LBL cells is
inhibited after treatment with a specific S1P1 antagonist W146 (1μM, 5μM, and 50μM) in
ZKS stroma supported cell culture. (K) Ratio of cell aggregates to free cells in
Myc;Cre;bcl-2 T-LBL cells 7 days after plating on ZKS stroma with vehicle only, or
increasing amounts of W146 (n=4 per group) ranging from 1μM to 50μM treatment. Bars in
panels F and K represent means determined from independent animals; and error bars
represent standard deviation of the mean. Scale bar for panels B-E and G-J = 40 μm. See
also Figure S7.
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Figure 8. The Selective S1P1 Antagonist W146 Promotes Intravasation of Bcl-2-overexpressing
T-LBL cells in vivo
(A) Schematic drawing of the experimental strategy. (B-G) Confocal images of EGFP-
labeled blood vessels (B, E), dsRED2-labeled lymphoma cells (C,F), and the merged images
of a vehicle-treated (D; n=29) and a W146-treated transplanted animal (G; n=18)
demonstrate that W146 treatment promotes intravasation of bcl-2-overexpressing lymphoma
cells (arrowheads) in vivo (compare panel G to D). Note that W146 treatment also inhibited
the in vivo formation of lymphoma cell aggregates (compare panel F to C). Scale bar for
panels B-G = 10 μM.
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