68 research outputs found

    SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice

    Get PDF
    SummaryIn yeast, worms, and flies, an extra copy of the gene encoding the Sirtuin Sir2 increases metabolic efficiency, as does administration of polyphenols like resveratrol, thought to act through Sirtuins. But evidence that Sirtuin gain of function results in increased metabolic efficiency in mammals is limited. We generated transgenic mice with moderate overexpression of SirT1, designed to mimic the Sirtuin gain of function that improves metabolism in C. elegans. These mice exhibit normal insulin sensitivity but decreased food intake and locomotor activity, resulting in decreased energy expenditure. However, in various models of insulin resistance and diabetes, SirT1 transgenics display improved glucose tolerance due to decreased hepatic glucose production and increased adiponectin levels, without changes in body weight or composition. We conclude that SirT1 gain of function primes the organism for metabolic adaptation to insulin resistance, increasing hepatic insulin sensitivity and decreasing whole-body energy requirements. These findings have important implications for Sirtuin-based therapies in humans

    Comparison of body fat percentage assessments by bioelectrical impedance analysis, anthropometrical prediction equations, and dual-energy X-ray absorptiometry in older women

    Get PDF
    Background: Individuals with high body fat have a higher risk of mortality. Numerous anthropometric-based predictive equations are available for body composition assessments; furthermore, bioelectrical impedance analysis (BIA) estimates are available. However, in older adults, the validity of body fat estimates requires further investigation. Objective: To assess the agreement between percentage body fat (BF%) estimates by BIA and five predictive equations based on anthropometric characteristics using dual X-ray absorptiometry (DXA) as reference method. A secondary objective was to identify whether excluding short-stature women improves the agreement of BF% estimates in a group of community-dwelling, older Mexican women. Methods: A concordance analysis of BF% was performed. A total of 121 older women participated in the study. Anthropometric information, BIA, and DXA body composition estimates were obtained. Five equations using anthropometric data were evaluated in order to determine body fat percentage (BF%) using DXA as reference method. Paired t-test comparisons and standard error of estimates (SEE) were obtained. The Bland-Altman plot with 95% limits of agreement and the concordance correlation coefficient (CCC) were used to evaluate the BF% prediction equations and BIA estimates. Results: The mean age of the study participants was 73.7 ( 5.8) years old. BIA and the anthropometric based equations examined showed mean significant differences when tested in the entire sample. For the taller women (height > 145 cm), no significant difference in the paired comparison was found between DXA and BIA of BF% estimates. The mean BF% was 40.3 ( 4.8) and 40.7 ( 6.2) for DXA and BIA, respectively. The concordance between methods was good (CCC 0.814), (SEE 2.62). Also, in the taller women subset, the Woolcott equation using waist-to-height ratio presented no significant difference in the paired comparison; however, the error of the estimates was high (SEE 3.37) and the concordance was moderate (CCC 0.693). Conclusion: This study found that BIA yielded good results in the estimation of BF% among women with heights over 145 cm. Also, in this group, theWoolcott predictive equation based on waist circumference and height ratio showed no significant differences compared to DXA in the paired comparison; however, the large error of estimates observed may limit its application. In older women, short stature may impact the validity of the body fat percentage estimates of anthropometric-based predictive equations

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition

    No full text
    Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance

    Critical role of stearoyl-CoA desaturase–1 (SCD1) in the onset of diet-induced hepatic insulin resistance

    No full text
    Stearoyl-CoA desaturase–1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids from saturated fatty acids. Mice with a targeted disruption of Scd1 gene locus are lean and display increased insulin sensitivity. To examine whether Scd1 activity is required for the development of diet-induced hepatic insulin resistance, we used a sequence-specific antisense oligodeoxynucleotide (ASO) to lower hepatic Scd1 expression in rats and mice with diet-induced insulin resistance. Treatment of rats with Scd1 ASO markedly decreased liver Scd1 expression (~80%) and total Scd activity (~50%) compared with that in rats treated with scrambled ASO (control). Insulin clamp studies revealed severe hepatic insulin resistance in high-fat–fed rats and mice that was completely reversed by 5 days of treatment with Scd1 ASO. The latter treatment decreased glucose production (by ~75%), gluconeogenesis, and glycogenolysis. Downregulation of Scd1 also led to increased Akt phosphorylation and marked decreases in the expression of glucose-6-phosphatase (Glc-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus, Scd1 is required for the onset of diet-induced hepatic insulin resistance

    Diet-Induced Metabolic Dysfunction of Hypothalamic Nutrient Sensing in Rodents

    No full text
    A sedentary lifestyle and excessive nutrient intake resulting from the consumption of high-fat and calorie-rich diets are environmental factors contributing to the rapid growth of the current pandemic of type 2 diabetes mellitus (DM2). Fasting hyperglycemia, an established hallmark of DM2, is caused by excessive production of glucose by the liver, resulting in the inability of insulin to suppress endogenous glucose production. To prevent inappropriate elevations of circulating glucose resulting from changes in nutrient availability, mammals rely on complex mechanisms for continuously detecting these changes and to respond to them with metabolic adaptations designed to modulate glucose output. The mediobasal hypothalamus (MBH) is the key center where nutritional cues are detected and appropriate modulatory responses are integrated. However, certain environmental factors may have a negative impact on these adaptive responses. For example, consumption of a diet enriched in saturated fat in rodents resulted in the development of a metabolic defect that attenuated these nutrient sensing mechanisms, rendering the animals prone to developing hyperglycemia. Thus, high-fat feeding leads to a state of “metabolic disability” in which animals’ glucoregulatory responses fail. We postulate that the chronic faltering of the hypothalamic glucoregulatory mechanisms contributes to the development of metabolic disease

    Diet-Induced Metabolic Dysfunction of Hypothalamic Nutrient Sensing in Rodents

    No full text
    A sedentary lifestyle and excessive nutrient intake resulting from the consumption of high-fat and calorie-rich diets are environmental factors contributing to the rapid growth of the current pandemic of type 2 diabetes mellitus (DM2). Fasting hyperglycemia, an established hallmark of DM2, is caused by excessive production of glucose by the liver, resulting in the inability of insulin to suppress endogenous glucose production. To prevent inappropriate elevations of circulating glucose resulting from changes in nutrient availability, mammals rely on complex mechanisms for continuously detecting these changes and to respond to them with metabolic adaptations designed to modulate glucose output. The mediobasal hypothalamus (MBH) is the key center where nutritional cues are detected and appropriate modulatory responses are integrated. However, certain environmental factors may have a negative impact on these adaptive responses. For example, consumption of a diet enriched in saturated fat in rodents resulted in the development of a metabolic defect that attenuated these nutrient sensing mechanisms, rendering the animals prone to developing hyperglycemia. Thus, high-fat feeding leads to a state of “metabolic disability” in which animals’ glucoregulatory responses fail. We postulate that the chronic faltering of the hypothalamic glucoregulatory mechanisms contributes to the development of metabolic disease
    corecore