2,316 research outputs found

    Uprolides N, O and P from the Panamanian Octocoral Eunicea succinea.

    Get PDF
    Three new diterpenes, uprolide N (1), uprolide O (2), uprolide P (3) and a known one, dolabellane (4), were isolated from the CH₂Cl₂-MeOH extract of the gorgonian octocoral Eunicea succinea, collected from Bocas del Toro, on the Caribbean coast of Panama. Their structures were determined using spectroscopic analyses, including 1D and 2D NMR and high-resolution mass spectrometry (HRMS) together with molecular modeling studies. Compounds 1-3 displayed anti-inflammatory properties by inhibiting production of Tumor Necrosis Factor (TNF) and Interleukin (IL)-6 induced by lipopolysaccharide (LPS) in murine macrophages

    Developments in the “Northern and Southern Hake” Case Study of FishPi

    Get PDF
    The overarching objective of the FishPi project is to strengthen regional cooperation in the area of fisheries data collection. The role of every case study within the project is to bring together the countries with the most involvement in the fisheries selected to coordinate and cooperate in the search of a probabilistic regional sampling design. To this aim, case study 4 (CS4) is focused in the Northern and Southern Hake stocks. The work done in the case study include the description of the fishery at a regional level, the compilation of the present national sampling activity, the compilation of the logbooks and/or sales notes from 2013 and 2014 –to have a single regional data set of all trips of interest in the region– and different runs of simulations to test the selected sampling scenarios and stratifications. Finally, an objective evaluation of the performance of these regional designs is expected to understand the changes needed compared to the present situation. This document presents the progress done in this case study, from the data compilation to the simulations, documenting the different steps taken and allowing an understanding of the pending tasks

    Detection of Anti-Counterfeiting Markers through Permittivity Maps Using a Micrometer Scale near Field Scanning Microwave Microscope

    Full text link
    [EN] This paper describes the use of microwave technology to identify anti-counterfeiting markers on banknotes. The proposed method is based on a robust near-field scanning microwave microscope specially developed to measure permittivity maps of heterogeneous paper specimens at the micrometer scale. The equipment has a built-in vector network analyzer to measure the reflection response of a near-field coaxial probe, which makes it a standalone and portable device. A new approach employing the information of a displacement laser and the cavity perturbation technique was used to determine the relationship between the dielectric properties of the specimens and the resonance response of the probe, avoiding the use of distance-following techniques. The accuracy of the dielectric measurements was evaluated through a comparative study with other well-established cavity methods, revealing uncertainties lower than 5%, very similar to the accuracy reported by other more sophisticated setups. The device was employed to determine the dielectric map of a watermark on a 20 EUR banknote. In addition, the penetration capabilities of microwave energy allowed for the detection of the watermark when concealed behind dielectric or metallic layers. This work demonstrates the benefits of this microwave technique as a novel method for identifying anti-counterfeiting features, which opens new perspectives with which to develop optically opaque markers only traceable through this microwave technique.This paper has been financially supported through the grant reference BES-2016-077296 of the call Convocatoria de las ayudas para contratos predoctorales para la formacion de doctores de 2016 by Ministerio de Economia y Competitividad (MINECO) and by European Social Funds (ESF) of European Union, and the project SEDMICRON-TEC2015-70272-R (MINECO/FEDER) supported by Ministerio de Economia y Competitividad (MINECO) and by European Regional Development Funds (ERDF) of European Union.Gutiérrez Cano, JD.; Catalá Civera, JM.; Plaza González, PJ.; Penaranda-Foix, FL. (2021). Detection of Anti-Counterfeiting Markers through Permittivity Maps Using a Micrometer Scale near Field Scanning Microwave Microscope. Sensors. 21(16):1-14. https://doi.org/10.3390/s21165463S114211

    Dynamic measurement of dielectric properties of food snack pellets during microwave expansion

    Full text link
    [EN] The in situ dielectric properties of a starch-based food pellet have been measured during microwave expansion. A dual-mode cylindrical cavity allowed simultaneous microwave heating and dielectric measurements of a single pellet inside a quartz tube, ensuring uniform heating during microwave processing. The cavity included additional measurement devices to correlate the dielectric properties with the main parameters of the expansion process, such as temperature, expansion time, pellet volume and absorbed power. A commercially available snack food pellet was Used as the test material for expansion experiments. Results indicated that dielectric constant (epsilon') and loss factor (epsilon") increased during heating, reaching a threshold value of epsilon' = 12.5 and epsilon" = 5.2, around a temperature of 115 degrees C when the material expanded and the dielectric properties dropped abruptly due to the loss of water content and the increase in size. This measurement procedure may provide useful material science information to improve the overall design of starch-based food pellets processed by microwaves. (C) 2017 Elsevier Ltd. All rights reserved.The work presented in this paper was funded by PepsiCo R&D.Gutiérrez Cano, JD.; Catalá Civera, JM.; Bows, J.; Penaranda-Foix, FL. (2017). Dynamic measurement of dielectric properties of food snack pellets during microwave expansion. Journal of Food Engineering. 202:1-8. https://doi.org/10.1016/j.jfoodeng.2017.01.021S1820

    Informe de la gestión y estrategias de la empresa Chester (industria c60202) en el simulador de negocios Capsim

    Get PDF
    El presente documento muestra el análisis y evolución de la toma de decisiones de la empresa Chester, que forma parte de la industria de los sensores, dentro de un ambiente de simulación en la plataforma Capsim. Se plantean los objetivos estratégicos, los principales indicadores de desempeño monitoreados a través de la herramienta de cuadro de mando integral y la definición de la estrategia que se siguió para cumplir con los objetivos

    Technological and infrastructure collaborative seismic research in Western Mexico

    Get PDF
    In February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, a region with a high occurrence of large earthquakes (> Mw = 7.5) and tsunami generation, on board the British Royal Research Ship James Cook. This successful joint cruise, named TSUJAL, was made possible thanks to a cooperative agreement between NERC and CSIC as part of the Ocean Facilities Exchange Group (OFEG), a major forum of European oceanographic institutions for the exchange of ship time, equipment and personnel. A dense geophysical data set was acquired using for the first time 6 km length seismic streamer facilities from Spain’s Consejo Superior de Investigaciones Cientificas (CSIC), usually operating in the Spanish RV Sarmiento de Gamboa, onboard the British RRS James Cook by solving all mechanical, electrical and electronic problems. The RRS James Cook in turn provides the seismic source and the acoustic, hullmounted echosounder operated by the British Natural Environment Research Council (NERC). Multiscale seismic and echosounder images unravel the subduction geometry, nature of the crust, and evidence faults and mass wasting processes. The data are crucial to estimating fault seismic parameters, and these parameters are critical to carrying out seismic hazard in Mexico, especially when considering largemagnitude earthquakes (Mw 8.0), and to constrain tsunami models.Peer Reviewe

    Spanish onshore sampling of Lepidorhombus spp.

    Get PDF
    Working document presented in WGCATCH.Results of Lepidorhombus spp. from the Spanish onshore sampling programme under the Data Collection Framework (2009-2014) are presented. Sampling covers two species (Lepidorhombus whiffiagonis and Lepidorhombus boscii) in ICES Subarea VI, VII, Divisions VIIIabd and Divisions VIIIc-IXa. Fishery description shows the importance of five métiers for these species and the relevance of a small group of ports. A description of the sampling level, sampling design and sampling procedures in relation to landing practices are presented, as well as a brief discussion about further developments to improve the sampling

    Directional Coupler Calibration for Accurate Online Incident Power Measurements

    Full text link
    © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] This letter proposes a calibration method to properly measure the incident power in a directional coupler (DC) when the measurement configuration has low directivity. The proposed method is based on measurements of short-circuits placed at different distances to calibrate the DC response. Results show that the method is clearly robust and provides accurate measurements even for directivities as low as 10 dB.This work was supported by the European Regional Development Fund (ERDF) through the Valencia Region 2014-2020 Operational Program under Project IDIFEDER/2018/027.Penaranda-Foix, FL.; Catalá Civera, JM.; Gutiérrez Cano, JD.; García-Baños, B. (2021). Directional Coupler Calibration for Accurate Online Incident Power Measurements. IEEE Microwave and Wireless Components Letters. 31(6):624-627. https://doi.org/10.1109/LMWC.2021.3070788S62462731
    corecore