110 research outputs found

    Evaluation of sedimentary bacterial community dynamics and contamination assessment of lower Des Plaines River

    Get PDF
    Urban rivers often contain elevated concentrations of contaminants such as organic pollutants and heavy metals which can be amplified in lotic ecosystems receiving effluents from wastewater treatment plants (WWTP). However, the impact of WWTPs on the microbial parameters of the urban river sediments has not been well documented compared to urban surface water. Collecting sediment samples at five different locations over a 9,000 m transect during four sampling periods, we investigated spatiotemporal variations of microbial parameters in sediments of lower Des Plaines River; the largest effluent-dominated stream in the United States and the effects of sediment physicochemical properties on the variations were explored. We reported reduced microbial biomass, CFUs, and distinct bacterial communities at the WWTP outfall compared to other sites, indicating that WWTP effluents have the potential to moderate bacterial community structure. Seasonal variations in the sedimentary bacterial community structure were evident regardless of the spatial variations imposed by the effluents. Our community-level physiological profiling of the sedimentary bacterial community structure indicated that temperature was more important than water chemistry, whereas total microbial biomass by phospholipid phosphate analysis responded to the influences of both temperature and water chemistry. Metal concentrations showed values that fall within the “fair” to “very poor” range of biological conditions outlined by the Midwest Biodiversity Institute. We posit that the increased sediment metal loads select for metal-tolerant microorganisms that help to maintain microbial biomass. In the spring, sequencing of bacterial 16S rRNA genes revealed significant effects of effluent on bacterial community composition at the WWTP outfall, showing increases in abundances of Caldilinea, Candidatus, Allochromatium, Sulfuritalea, and Nitrospira sequences, linked to anthropogenic inputs from WWTP effluents. Given that human dependence on effluent-dominated ecosystems for water resources will increase with rapidly increasing urbanization, studies focusing on remediation and policy changes are dire to develop effective management of existing urban rivers

    Multimodality Imaging of the Tricuspid Valve and Right Heart Anatomy

    Get PDF
    The characterization of tricuspid valve and right-heart anatomy has been gaining significant interest in the setting of new percutaneous transcatheter interventions for tricuspid regurgitation. Multimodality cardiac imaging provides a wealth of information about the anatomy and function of the tricuspid valve apparatus, right ventricle, and right atrium, which is pivotal for diagnosis and prognosis and for planning of percutaneous interventions. The present review describes the role of echocardiography, cardiac magnetic resonance, and multidetector row cardiac computed tomography for right heart and tricuspid valve assessment

    AI for Zero-Touch Management of Satellite Networks in B5G and 6G Infrastructures

    Get PDF
    Satellite Communication (SatCom) networks are become more and more integrated with the terrestrial telecommunication infrastructure. In this paper, we shows the current status of the still ongoing European Space Agency (ESA) project”Data-driven Network Controller Orchestration for Real time Network Management-ANChOR”. In particular, we propose a Long Short-Term Memory (LSTM)based methodology to drive the dynamic selection of the optimal satellite gateway station, which will be performed by combining different kinds of information (i.e. traffic profile, network and weather conditions). Some preliminary results on the real world dataset shows the effectiveness of the proposed approach

    Atrial functional tricuspid regurgitation: a novel and underappreciated clinical entity

    Get PDF
    Abstract Functional or secondary tricuspid regurgitation (FTR) is a progressive disease with a significant negative impact on patient morbidity and mortality. Recently, atrial fibrillation (AF) has been recognized as a cause of FTR (with/without coexisting functional mitral regurgitation) by promoting right atrial (RA) remodeling and secondary tricuspid valve (TV) annulus dilation, even in the absence of right ventricular (RV) dilation or dysfunction. This distinct form of FTR has been called "atriogenic" or "atrial". Recent evidence suggests that the RA is an important player in FTR pathophysiology not only for patients with AF, but also for those in sinus rhythm. Preliminary reports on atrial FTR show that cardioversion with documented maintenance of sinus rhythm promotes TV annulus and RA reverse remodeling and may significantly reduce FTR severity at follow-up. Large-scale studies on the prognostic benefits of rhythm vs rate-control strategy in atrial FTR patients are needed to substantiate specific guidelines indications for this subset of patients

    Information geometry and local asymptotic normality for multi-parameter estimation of quantum Markov dynamics

    Get PDF
    This paper deals with the problem of identifying and estimating dynamical parameters of continuous-time quantum open systems, in the input-output formalism. First, we characterise the space of identifiable parameters for ergodic dynamics, assuming full access to the output state for arbitrarily long times, and show that the equivalence classes of undistinguishable parameters are orbits of a Lie group acting on the space of dynamical parameters. Second, we define an information geometric structure on this space, including a principal bundle given by the action of the group, as well as a compatible connection, and a Riemannian metric based on the quantum Fisher information of the output. We compute the metric explicitly in terms of the Markov covariance of certain "fluctuation operators", and relate it to the horizontal bundle of the connection. Third, we show that the system-output and reduced output state satisfy local asymptotic normality, i.e. they can be approximated by a Gaussian model consisting of coherent states of a multimode continuos variables system constructed from the Markov covariance "data". We illustrate the result by working out the details of the information geometry of a physically relevant two-level system.Comment: 28 pages, 4 figure

    A Quantum Langevin Formulation of Risk-Sensitive Optimal Control

    Full text link
    In this paper we formulate a risk-sensitive optimal control problem for continuously monitored open quantum systems modelled by quantum Langevin equations. The optimal controller is expressed in terms of a modified conditional state, which we call a risk-sensitive state, that represents measurement knowledge tempered by the control purpose. One of the two components of the optimal controller is dynamic, a filter that computes the risk-sensitive state. The second component is an optimal control feedback function that is found by solving the dynamic programming equation. The optimal controller can be implemented using classical electronics. The ideas are illustrated using an example of feedback control of a two-level atom

    Predicting Many Properties of a Quantum System from Very Few Measurements

    Get PDF
    Predicting the properties of complex, large-scale quantum systems is essential for developing quantum technologies. We present an efficient method for constructing an approximate classical description of a quantum state using very few measurements of the state. This description, called a ‘classical shadow’, can be used to predict many different properties; order log(M) measurements suffice to accurately predict M different functions of the state with high success probability. The number of measurements is independent of the system size and saturates information-theoretic lower bounds. Moreover, target properties to predict can be selected after the measurements are completed. We support our theoretical findings with extensive numerical experiments. We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables and the energy variance of many-body local Hamiltonians. The numerical results highlight the advantages of classical shadows relative to previously known methods

    Epidemiology of Mycobacterium tuberculosis lineages and strain clustering within urban and peri-urban settings in Ethiopia

    Get PDF
    Background Previous work has shown differential predominance of certain Mycobacterium tuberculosis (M. tb) lineages and sub-lineages among different human populations in diverse geographic regions of Ethiopia. Nevertheless, how strain diversity is evolving under the ongoing rapid socio-economic and environmental changes is poorly understood. The present study investigated factors associated with M. tb lineage predominance and rate of strain clustering within urban and peri-urban settings in Ethiopia. Methods Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients who visited selected health facilities were recruited in the years of 2016 and 2017. A total of 258 M. tb isolates identified from 163 sputa and 95 fine-needle aspirates (FNA) were characterized by spoligotyping and compared with international M.tb spoligotyping patterns registered at the SITVIT2 databases. The molecular data were linked with clinical and demographic data of the patients for further statistical analysis. Results From a total of 258 M. tb isolates, 84 distinct spoligotype patterns that included 58 known Shared International Type (SIT) patterns and 26 new or orphan patterns were identified. The majority of strains belonged to two major M. tb lineages, L3 (35.7%) and L4 (61.6%). The observed high percentage of isolates with shared patterns (n = 200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for the effect of geographical variations, clustering rate was significantly lower among individuals co-infected with HIV and other concomitant chronic disease. Compared to L4, the adjusted odds ratio and 95% confidence interval (AOR; 95% CI) indicated that infections with L3 M. tb strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] and TB-HIV co-infection [2.84 (1.61, 5.55)]. Conclusion Despite the observed difference in strain diversity and geographical distribution of M. tb lineages, compared to earlier studies in Ethiopia, the overall rate of strain clustering suggests higher transmission and warrant more detailed investigations into the molecular epidemiology of TB and related factors

    The challenge of unprecedented floods and droughts in risk management

    Get PDF
    Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3
    corecore