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Information geometry and local asymptotic normality for multi-parameter estimation of

quantum Markov dynamics

Madalin Guta1, a) and Jukka Kiukas2, b)

1)School of Mathematical Sciences, University of Nottingham, University Park,

Nottingham, NG7 2RD, UK

2)Department of Mathematics, Aberystwyth University, Penglais, Aberystwyth,

Ceredigion, SY23 3BZ, UK

(Dated: 20 March 2017)

This paper deals with the problem of identifying and estimating dynamical parameters

of continuous-time Markovian quantum open systems, in the input-output formalism.

First, we characterise the space of identifiable parameters for ergodic dynamics, assuming

full access to the output state for arbitrarily long times, and show that the equivalence

classes of undistinguishable parameters are orbits of a Lie group acting on the space of

dynamical parameters. Second, we define an information geometric structure on this

space, including a principal bundle given by the action of the group, as well as a com-

patible connection, and a Riemannian metric based on the quantum Fisher information

of the output. We compute the metric explicitly in terms of the Markov covariance of

certain ”fluctuation operators”, and relate it to the horizontal bundle of the connec-

tion. Third, we show that the system-output and reduced output state satisfy local

asymptotic normality, i.e. they can be approximated by a Gaussian model consisting of

coherent states of a multimode continuos variables system constructed from the Markov

covariance “data”. We illustrate the result by working out the details of the information

geometry of a physically relevant two-level system.

a)Electronic mail: madalin.guta@nottingham.ac.uk
b)Electronic mail: jek20@aber.ac.uk
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I. INTRODUCTION

The input-output formalism12,23 is fundamental to key areas of quantum open systems the-

ory such as Markov dynamics, continuous-time measurements and filtering theory7,10, quantum

networks25 and feedback control8,39. The formalism serves as a platform which integrates in

a common language methods from control engineering, classical and quantum stochastic pro-

cesses, non-equilibrium statistical mechanics, and quantum information. In this paper we aim

to further expand this platform by adopting a system identification42 perspective. Concretely,

we investigate which dynamical parameters of an open system can be estimated from the out-

put state (identifiability problem), how the associated quantum Fisher information arises from

the structure of the parameter manifold (information geometry), and how the multi-parameter

statistical model defined by the output state can be approximated by a quantum Gaussian

model (local asymptotic normality).

System

Input Output

A1(t) Aout
1 (t)

Aout
k (t)Ak(t) N(t)

B(t)

H, L1, . . . , Lk

FIG. 1. Continuous-time Markovian dynamics of an open quantum system in the input-output for-

malism. Input fields Ai(t) interact with the system, so that the joint unitary transformation UD(t)

depends on the dynamical parameter D := (H,L1, . . . , Lk) where H is the system Hamiltonian and

Li are the coupling (jump) operators with the input fields. The output state carry information about

D, which can be estimated by measuring the output fields.

In a typical quantum input-output set-up, an open system (e.g. an atom, or a cavity mode)

is driven by an input consisting of the vacuum or coherent state of the electromagnetic field, the

latter being modelled by a continuum of Bosonic modes representing the incoming “quantum

noise”, see Figure 1. The input interacts with the system in a Markovian fashion, with joint

unitary evolution UD(t) determined by the “dynamical parameters” D := (H,L1, . . . , Lk), where

H is the system Hamiltonian and Li is the coupling operator to the i-th input mode.

The output fields carry information about the dynamical parameter D, and can be monitored

by means of continuous-time measurements, or may be “post-processed”, e.g. by using feed-

forward or feedback schemes53. However, since such schemes often rely on the knowledge of the

dynamics, it is important to develop efficient methods for estimating the unknown parameters

entering the dynamics. Our goal here is not to propose or analyse specific measurement and

estimation schemes (see e.g.14,20,21,43 for related results), but rather investigate the statistical

properties of the output state, which will provide the ultimate limits in estimation precision.
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We envisage that the structure of the output state uncovered here will be relevant not only for

designing efficient measurement schemes (cf.28 for optimal estimation of qubit states) but also

for applications in quantum metrology44 and quantum control, including feedback.

In our analysis we assume that the system is finite dimensional, and the input is stationary

(time independent). We also assume that the dynamics is ergodic, i.e. the system has a unique

strictly positive stationary state ρDss, in which case any initial state converges to ρDss and the

output becomes stationary in time. From a quantum information perspective, the system-

output state |Ψs+o
D (t)〉 associated to the time interval [0, t] is a continuous matrix product

state52, and the output state ρout
D (t) is a continuous version of a purely generated finitely

correlated state18. Our results are therefore relevant for the problem of estimating such states,

whose discrete version was considered in6 from the perspective of quantum tomography of spin

chains.

Since we deal with a multi-parameter statistical problem, we adopt a differential geometry

viewpoint in the spirit of the theory of information geometry2. This allows us to characterise

the manifold of identifiable parameters as the quotient of the parameter space with respect to a

group of transformations leaving the output state invariant (see Theorem 1), thus extending our

previous results for discrete time quantum Markov chains31. An analogous differential geometric

construction has been presented in33,34 for parametrisations of discrete matrix product states,

and a related approach has been used in studying the manifold of correlation matrices for

stationary states of certain specific open quantum systems4.

Furthermore, we show that the quantum Fisher information (QFI)11,36 of the output is closely

related to the covariance of certain “fluctuation operators”, which we study in detail in section

V. The covariance defines a Riemannian metric on the space of identifiable parameters, and

provides a complex structure and a positive inner product on the tangent space of identifiable

parameters. An alternative approach to computing the quantum Fisher information is described

in22, see also44 and16.

With the help of this differential geometric structure we construct an associated algebra of

canonical commutation relations (CCR), and a family of coherent states whose QFI is equal to

the QFI per time unit of the output state. The latter will play the role of limit Gaussian model

below.

Local asymptotic normality (LAN) is a key concept in asymptotic statistics, that describes

how certain statistical models can be approximated by simpler Gaussian models, with vanishing

error in the limit of large “sample size”. This phenomenon occurs for instance in the case of

models consisting of independent, identically distributed samples41, but also for multiple obser-

vations from an ergodic Markov process37, or hidden Markov process9. In quantum statistics,
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the general theory of convergence of models was discussed in24,29, and LAN for ensembles of

independent finite dimensional systems was established in40. For quantum Markov dynamics,

LAN for one-dimensional parameter models was discussed in27,31 for discrete time, and in13 for

continuous-time. Here we extend the latter to the multi-dimensional model where all identi-

fiable parameters are assumed to be unknown; this brings forward the information-geometric

aspects, which do not play a significant role in a one-parameter setting. Theorem 2 shows that

the system-output state and (reduced) output state models converge to the Gaussian model

consisting of a family of coherent states of the above mentioned CCR algebra, in the limit of

large times.

The present investigation suggests several interesting future lines of research. One direction

is to understand the physical significance of the geodesic distance of the Fisher metric and the

relation to quantum speed limit51 and thermodynamic metrics50. Another direction is to show

that fluctuation operators satisfy the Central Limit Theorem, and identify the measurement

which achieves the optimal estimation precision. Building on32, one can develop a similar theory

for the identification of quantum linear input-output systems in the stationary regime, i.e. from

the “power spectrum”. Moreover, the extension of the current theory to non-ergodic dynamics

and the analysis of “metastable”45 or “near phase transition”44 systems is important due to its

relevance for quantum metrology. Finally, our framework has a number of interesting generali-

sations connected with other ongoing mathematical work on quantum stochastic evolutions. In

particular, when the stationary state manifold is nontrivial (non-ergodic case), one can discuss

conserved quantities and adiabatic transport1,3,26. From the more technical point of view, our

manifold of dynamical parameters actually has a natural Lie group structure17; reformulation

of our results in this more structured framework could be useful especially for applications to

control theory.

In order to increase the accessibility of the paper, we collect the main constructions and

results in the next section.

II. OVERVIEW OF RESULTS

Section III introduces the input-output formalism of quantum open dynamics, as illustrated

in Figure 1. For a given dynamical parameter D := (H,L1, . . . , Lk), the system-output state

is given by |Ψs+o
D (t)〉 = UD(t)|ϕ ⊗ Ω〉 where |ϕ〉 is the initial system state, |Ω〉 is the input

state (taken to be the vacuum), and UD(t) is the joint unitary evolution given by the quantum
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stochastic differential equation

dUD(t) =

(
k∑

i=1

(iH ⊗ 1F dt+ Li ⊗ dA∗i (t)− Li∗ ⊗ dAi(t))−
1

2

k∑

i=1

Li∗Li ⊗ 1F dt

)
UD(t).

Above, dAi(t) and dA∗i (t) are the time increments of input annihilation and creation operators

of k Bosonic input channels, acting on the Fock space F over L2(R+) ⊗ Ck. The reduced

system evolution is governed by an ergodic Markov semigroup with Lindblad generator WD,

and unique stationary state ρDss. The output state after time t is obtained by tracing out the

system, ρout
D (t) = trs(|Ψs+o

D (t)〉〈Ψs+o
D (t)|). For long times the system converges to the stationary

state, and the output becomes stationary in time.

D

gD P Derg

Identifiable parameters Equivalence classes

T nonid
D

T id
D

Ḋa

Ḋb

D

FIG. 2. Left panel: the space of ergodic dynamical parameters Derg as principle G-bundle over the

base manifold P of identifiable parameters. Equivalence classes (red lines) of dynamical parameters

with identical outputs. Right panel: the tangent space at the point D decomposes as direct sum of the

tangent space T nonid
D to the orbit of the group action, and the space T id

D of “identifiable directions”

defined by the identity E0
D(Ḋ) = 0. The Markov covariance defines a complex structure and an inner

product on T id
D , such that the QFI rate is fa,b = 4Re(Ḋa, Ḋa)D.

Section IV discusses the identifiability problem in the stationary setting, see Figure 2. We

define an equivalence relation between dynamical parameters for which the stationary output

states are identical for all times t. In Theorem 1 we show that two dynamical parameters D and

D′ are equivalent if and only if they are related by the “gauge transformation” H ′ = W ∗HW +

r1 and L′i = W ∗LiW , where W is unitary and r is a real constant. From a differential geometry

viewpoint, the space of identifiable parameters is the quotient P := Derg/G, where Derg is the

manifold of dynamical parameters D with ergodic dynamics, and G = PU(d)×R is the group of

“gauge transformations” whose orbits are the equivalence classes of parameters. In particular,

we show that Derg is a principal G-bundle over the base manifold P . The vertical bundle over

Derg consists of subspaces T nonid
D of the tangent space TD at D, corresponding to un-identifiable

changes of parameters, i.e. infinitesimal changes induced by the action of the groupG. Although

in general there is no canonical decomposition of the tangent space into “identifiable” and “non-

5



indentifiable” components (i.e. TD = T nonid
D ⊕T id

D ), such a decomposition can be obtained from

a principal connection, in a covariant way. A natural choice of connection is provided by the

information geometry, as discussed below. This approach to system identification often appears

in the classical setting, and the advantage is that one gains insight in the geometric structure of

the parameter manifold, beyond the direct computation of the Fisher information. For instance,

the connection can be useful for developing recursive estimation algorithms based on geodesics

of the manifold35. For the standard theory of connections on principal bundles, see e.g.38.

In Section V we derive the information geometric structure of the statistical estimation

problem at hand. Before discussing the statistical aspects, we describe the basic elements of a

theory of “output fluctuations” which is essential for information geometry, but has an interest

in its own and deserves to be further investigated. For each (k + 1)-tuple of system operators

X = (X0, X1, . . . , Xk) ∈M(Cd)k+1 we define the associated fluctuation operator FD,t(X) given

by the quantum stochastic integral

FD,t(X) =
1√
t

∫ t

0

(
i

k∑

i=1

jD,s(X
i)dA∗i (s) + jD,s ◦ CD(X0)ds

)
, CD(X) := X − tr[ρDssX]1,

where jD,s(X) := U∗D(s)XUD(s) is the time-evolved operator X. The covariance of FD,t(X)

converges in the limit of large times, and defines a positive (but degenerate) inner product on

M(Cd)k+1 (cf. Proposition 1 for the explicit formula)

(X,Y)D = lim
t→∞
〈FD,t(X)∗FD,t(Y)〉.

Furthermore, in Propositions 1 and 2 we construct a linear map RD : M(Cd)k+1 → M(Cd)k+1

such that RD is a projection onto the subspace of operators of the form (0, Y 1, . . . , Y k) ∈
M(Cd)k+1, and the kernel of RD is the subspace of degenerate vectors of the inner product.

With this definition, the inner product take the following simple form

(X,Y)D =
k∑

i=1

tr
[
ρDssRD(X)i∗RD(Y)i

]
.

We denote by Ḋ = (Ḣ, L̇1, . . . , L̇k) an element of the tangent space TD. The real linear map XD

defined below plays an important role in connecting fluctuation operators with the information

geometry:

XD : TD →M(Cd)k+1

Ḋ 7→ (ED(Ḋ), L̇1, . . . , L̇k)

where ED is the map

ED : TD →M(Cd)

ED : Ḋ 7→ Ḣ + Im
k∑

i=1

L̇i∗Li.
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Here the second term in ED is due to quantum Ito calculus, hence in some sense represents the

effects of the stochastic output on the information geometry. Using the map XD we define a

real inner product on the tangent space TD

(Ḋ, Ḋ′) 7−→ Re(XD(Ḋ),XD(Ḋ′))D.

Moreover, since XD is injective, we can use it to define a projection PD = X−1
D ◦RD ◦XD acting

on TD. Its kernel is the vertical space T nonid
D whose vectors correspond to infinitesimal “gauge

transformations”, and are the degenerate vectors of the inner product. The range of PD consists

of tangent vectors satisfying the condition ED(Ḋ) = 0. In particular, since PD is a projection,

the tangent space can be decomposed into “identifiable” and “non-identifiable” directions (see

right panel of Figure 2)

TD = ranPD ⊕ kerPD = T id
D ⊕ T nonid

D

whose statistical interpretation is discussed below. This split has also an interesting differen-

tial geometric interpretation: the above tangent space decomposition, and inner product are

covariant with respect to the action of the group G and define a connection on the resulting

principal G-bundle, with the associated Lie algebra valued one-form

ωD : TD → g, ωD(Ḋ) = (−iW−1
D ◦ CD ◦ ED(Ḋ), tr[ρDssED(Ḋ)])

explicitly depending on the map ED(Ḋ) containing the essential quantum Ito correction. More-

over, the strictly positive inner product on T id
D induces a strictly positive inner product on the

tangent space T[D] to the point [D] in the base space P = Derg/G of identifiable parameters. As

we will see below, this Riemannian metric is closely connected to the quantum Fisher infor-

mation rate of the output state, so we will refer to it as the information geometry of the open

quantum system, in analogy to the classical case2.

Let us consider now the problem of estimating the dynamical parameter D. Although the

key constructions could be introduced in a “coordinate free” way, in order to emphasise the

statistical aspects we choose to work with a given (but arbitrary) parametrisation θ 7→ Dθ

of Derg, where θ is an unknown parameter belonging to an open subset of Rm, with m :=

dim(Derg). At a given point D = Dθ ∈ Derg, we define the tangent vectors Ḋa := ∂D/∂θa =

(Ḣa, L̇
1
a, . . . , L̇

k
a) describing infinitesimal changes of the coordinate θa, for a = 1, . . . ,m; these

vectors form a basis of the tangent space TD.

We consider now the m×m quantum Fisher information (QFI) matrix F θ(t) associated to

the system-output state |Ψs+o
Dθ

(t)〉. The QFI is proportional to the real part of the covariance

matrix of (centred) “generators” G0
θ,a(t) of infinitesimal changes with respect to parameter

component θa
11. We show that the generator G0

θ,a(t) (normalised by t−1/2) can be expressed as

7



a fluctuation operator Ft(XD(Ḋa)), using the map XD defined above. As consequence, the QFI

grows linearly in time, and the QFI rate per time unit f θ = limt→∞ F
θ(t)/t can be expressed

in terms of the Markov covariance as

f θa,b = 4Re(XD(Ḋa),XD(Ḋb))D = 4Re(RDXD(Ḋa), RDXD(Ḋb))D

= 4
k∑

i=1

Re tr
[
ρDss

(
L̇ia − i[Li,W−1

D ◦ E0
D(Ḋa)]

)∗ (
L̇ib − i[Li,W−1

D ◦ E0
D(Ḋb)]

)]
.

where WD is the Lindblad operator at D and E0
D = CD◦ED. In particular, the Fisher information

rate associated to directions in vertical bundle T nonid
D (gauge transformations) is equal to zero

as expected from the invariance of the output state. This follows from the fact that XD maps

T nonid
D into kerRD.

Above we saw that the real part of the Markov covariance (·, ·)D defines a positive defi-

nite inner product on the real space T id
D . In fact, T id

D can be made into a complex space by

introducing the complex structure

JD : T idD → T idD

JD : (Ḣ, L̇1, . . . , L̇k) 7→
(

k∑

i=1

ReL̇i∗Li , iL̇1, . . . , iL̇k

)
. (1)

With this definition the map XD becomes an isomorphism of complex spaces and (·, ·)D defines

a complex inner product on (T id
D ,JD). Using the imaginary part σD of the inner product, we

define the canonical commutation relations (CCR) algebra CCR(T id
D , σD) generated by Weyl

operators with commutation relations

W (Ḋ)W (Ḋ′) = eiσ
D(Ḋ,Ḋ′)W (Ḋ + Ḋ′), W (−Ḋ) = W (Ḋ)∗, Ḋ, Ḋ′ ∈ T id

D .

Following a standard construction we define the Fock representation and the coherent states

|Ḋ〉 := W (Ḋ)|0〉, where |0〉 is the vacuum state 〈0|W (Ḋ)|0〉 = exp(−(Ḋ, Ḋ)D/2) This model will

be interpreted below as limit of the output state model for large times.

Section VI details the above constructions in the case of special one dimensional models,

and for a general multidimensional model for a two dimensional system.

In section VII we study the asymptotic statistical structure of the output state. The main

result is the local asymptotic normality (LAN) Theorem 2 which shows that both the system-

output state, and the stationary output state can be approximated by coherent states of the

CCR algebra CCR(T id
D , σD). Below we give a brief description of the result and its interpreta-

tion.

Let us consider a parametrisation u 7→ [D]u of (an open subset of) the space of identifiable

parameters P = Derg/G, such that the origin u = 0 corresponds to a given parameter of interest

8



u
v

��� s+o

v/
p

t
(t)
E

��� s+o

u/
p

t
(t)
E

System-output states at time t Limit Gaussian shift model

t ! 1

FIG. 3. Local asymptotic normality as weak convergence to the Gaussian limit. The inner products

of system-output states with local parameter u, v converge (uniformly) to the inner products of the

corresponding coherent state |u〉 and |v〉, in the limit of large times.

[D0] = [D]u=0. We define the time-indexed family of “local” statistical models

Q̃t :=
{
ρout
u/
√
t
(t) : u ∈ O ⊂ Rdim(P)

}

which consist of the output state for unknown parameter values u/
√
t in a shrinking ball of size

scaling as the statistical uncertainty. The local model Q̃t captures the asymptotic properties

of the quantum output state for parameters in a neighbourhood of [D0], and it can be justified

operationally by means of adaptive procedures whereby a “small part” of the output can be

used to localise the parameter, while the “remaining part” can be used for estimating the local

parameter u (cf.30 for a similar argument in the state estimation setup).

To define the system-output statistical model let us consider a horisontal section s : P →
Derg of the principal bundle, i.e. the tangent space to s(P) at D is the horisontal space T idD .

Let

Qt :=
{∣∣∣Ψs+o

u/
√
t
(t)
〉

: u ∈ O ⊂ Rdim(P)
}
,

be the quantum statistical model where
∣∣∣Ψs+o

u/
√
t
(t)
〉

is the joint system-output state at time

t at the dynamical parameter Du = s([D]u). The reasons for using a horisontal section in

defining the model are as follows. While the stationary output state depends only on the

identifiable parameters in P , the system-output state is also sensitive to the location of the

parameter within an orbit. It turns out that the asymptotic properties can be captured most

transparently by choosing a horisontal section which sets certain unphysical phase factors to

zero and allows us to understand the model directly in terms of the geometric properties of the

vector state, as explained below.

Finally, we define the Gaussian model

G :=
{
ρu := |u〉〈u| : u ∈ O ⊂ Rdim(P)

}

where |u〉 = W (
∑

a uaḊa)|0〉 is the coherent state of the CCR algebra CCR(T idD0
, σD0). By

construction, the QFI of this model is equal to the QFI rate f of the output state at [D0],

9



which also is the QFI of the output state with respect to the local parameter u, rather than

the “true” parameter u/
√
t.

The first version of LAN states that Qt converges (weakly) to G for large times in the sense

of convergence of the inner products (uniformly in u, v ∈ O), as illustrated in Figure 3

lim
n→∞

〈
Ψs+o
u/
√
t
(t)
∣∣∣ Ψs+o

v/
√
t
(t)
〉

= 〈u|v〉.

Since pure state models are fully characterised by the inner products, the convergence simply

means that for large times the geometry of the system-output states is very similar to that of

the coherent states. Although intuitive, this notion of convergence is not suitable for mixed

states such as that of the output, and does not have a direct operational meaning. In the

second version of LAN we show that the output models Q̃t converge strongly to G in the sense

that there exist channels Tt and St such that

lim
t→∞

sup
u∈O

∥∥∥Tt
(
ρout
u/
√
t
(t)
)
− ρu

∥∥∥
1

= 0

lim
t→∞

sup
u∈O

∥∥∥St (ρu)− ρout
u/
√
t
(t)
∥∥∥

1
= 0.

A concrete consequence of this “convergence to Gaussianity” is that the QFI computed above

is asymptotically “achievable” in the sense that the estimation of dynamical parameters reduces

to that of estimating a Gaussian displacement family with QFI equal to fa,b. Similarly to LAN

for ensembles of identical states30, the result implies that the optimal measurement is a linear

one (i.e. of homodyne and heterodyne type) and the errors are normally distributed. However,

since this paper concentrates on the structure of the quantum states, the measurement and

estimation procedures are not discussed here.

III. PRELIMINARIES ON QUANTUM MARKOV PROCESSES

We begin by introducing notations and necessary background about the input-output for-

malism of continuous-time quantum Markov processes23. The formalism describes the joint

unitary evolution of an open quantum system interacting with a Bosonic environment in the

Markov regime, cf. Figure 1. From this, one can derive the reduced (master) dynamics of the

system, as well as the stochastic Schrödinger equations for quantum trajectories, describing the

stochastic evolution of the system conditional on observations produced by a continuous-time

measurement on the environment. However, in this paper we will be mainly interested in the

output quantum state, i.e. the state of the environment after the interaction with the system.

Throughout the paper we assume the system to be finite-dimensional, with Hilbert space

H = Cd, and associated algebra of observables A = M(Cd). As we will detail below, the
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dynamics is specified by the system Hamiltonian H, together with the quantum jump operators

L1, . . . , Lk. We denote these collectively by

D = (H,L1, . . . , Lk) = (H,L) ∈ D := Msa(Cd)×M(Cd)k,

and refer to each D ∈ D as a dynamical parameter, and to D as manifold (space) of dynamical

parameters.

A. Environment as quantum noise.

In the Markov approximation, the interaction can be described as the unitary scattering of

incoming vacuum Bosonic fields, caused by the continuous interaction with the system. The

environment is modelled by k Bosonic channels whose Hilbert space is the Fock space

F := F(hk) = C|Ω〉 ⊕
∞⊕

l=1

h⊗slk

where hk := L2(R+) ⊗ Ck is the one particle space of the k channels, and |Ω〉 is the vacuum

vector. Similarly, we denote by F(a,b) the Fock space over L2((a, b)) ⊗ Ck. For each time

t, the symmetric Fock space decomposes as tensor product F = F(0,t) ⊗ F(t,∞) between the

space of excitations up to time t (the past) and after time t (the future). The fundamental

environment degrees of freedom are the annihilation and creation operators of the ith channel

Ai(f) := A(|f〉 ⊗ |i〉) and respectively A∗i (g) := Ai(g)∗, which are defined in a standard way46

for all |f〉, |g〉 ∈ L2(R+), and satisfy the commutation relations

[A∗i (g), Aj(f)] = Im〈f |g〉δi,j1.

In particular, we will deal with the annihilation and creation processes Ai(t) := Ai(χ[0,t]) and

A∗i (t), where t ∈ R+ represents time23,46. These processes are the quantum analogue of the

“classical” Wiener process and can be used to define quantum stochastic integrals of the form

I(t) =

∫ t

0

k∑

i=1

[
M i(s)dAi(s) +N i(s)dA∗i (s)

]
+ P (s)ds

where M i(s), N i(s), P (s) are time-adapted operator valued integrands, i.e. they are of the form

X(s)⊗ 1[s,∞) with respect to the decomposition F = F(0,s) ⊗F(s,∞). Quantum stochastic inte-

grals can be formally multiplied, and the product I1(t)I2(t) of two such integrals is a stochastic

integral whose increment is given by

d(I1(t)I2(t)) = dI1(t) · I2(t) + I1(t) · dI2(t) + dI1(t) · dI2(t) (2)

where the third terms is the Ito correction which can computed by using the quantum Ito rule

dAi(t)dA
∗
j(t) = δi,jdt (3)

while all other products are zero.
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B. Interaction as input-output scattering.

We now introduce the coupling between system and the Bosonic environment, and the

corresponding unitary evolution. Each dynamical parameter D = (H,L) determines a unique

continuous family UD(t) of unitary operators (cocycles) describing evolution of the system and

environment in the interaction picture with respect to the free evolution of the fields, the latter

being given by the second quantisation of the right shift on L2(R). The unitaries are defined

as the solution of the quantum stochastic differential equation (QSDE)

dUD(t) =

(
k∑

i=1

(Li ⊗ dA∗i (t)− Li∗ ⊗ dAi(t))− iHeff ⊗ 1F dt

)
UD(t), (4)

with initial condition UD(0) = 1. Here, Heff is the effective Hamiltonian Heff := H −
i
2

∑k
i=1 L

i∗Li which generates a semigroup SD(t) = e−itHeff of contractions on the system’s

space, and describes the evolution of the system between consecutive quantum jumps. The

imaginary part i
2

∑k
i=1 L

i∗Li is the Ito correction which insures that UD(t) is unitary. For sim-

plicity of notation, from now on we will omit the tensor product and simply write Li ⊗ dA∗i (t)
as LidA∗i (t), an similarly for other integrands.

If the system is initialised in state |ϕ〉 and the input fields are in the vacuum state |Ω〉, then

the state of the system together with the output after time t is given by

|Ψs+o
D (t)〉 = UD(t)|ϕ⊗ Ω〉 = VD(t)|ϕ〉, (5)

where VD(t) : H → H⊗F is a family of isometries defined by the second equality. The output

state is the state of the scattered field modes after the interaction with the system, and is

obtained by tracing out the system

ρout
D (t) = trH[|Ψs+o

D (t)〉〈Ψs+o(t)|].

Let us denote by jD,t(X) := UD(t)∗(X ⊗ 1F)UD(t) the Heisenberg evolved system operator X.

Using equation (4), we find that the operators satisfy the quantum Langevin equation

djD,t(X) =
∑

i

(
jD,t([X,L

i])dA∗i (t) + jD,t([L
i∗, X])dAi(t)

)
+ jD,t(WD(X))dt. (6)

where

WD(·) = −i(·)Heff + iH∗eff(·) +
k∑

i=1

Li∗(·)Li

is called the Lindblad generator. Its significance can understood by considering the reduced

Heisenberg evolution of the system TD,t : A → A defined by taking the expectation over the

environment

TD,t(X) := 〈Ω|jD,t(X)|Ω〉 = VD(t)∗(X ⊗ 1F)VD(t). (7)
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From (6) we find dTD,t(X) = d〈Ω|jD,t(X)|Ω〉 = WD(TD,t(X)) which means that TD,t is a trace

preserving completely positive semigroup with generator WD. The generator is said to be

ergodic, if it has a unique stationary state ρDss (i.e. [WD]∗(ρ
D
ss) = 0) which has full rank. In this

case19

lim
t→∞

TD,t = lim
t→∞

1

t

∫ t

0

TD,sds = tr[ρDss(·)]1. (8)

Since we are interested in the long-time asymptotic properties of the output state, we assume

that the dynamics has reached stationarity, or equivalently that the initial state of the system

is ρDss. In this case the output state is time-stationary and is given by

ρout
D (t) = trH[UD(t)(ρDss ⊗ |Ω〉〈Ω|)UD(t)∗]. (9)

Since ρDss is a stationary state, the range of WD is included in

BD
0 = {X | tr[ρDssX] = 0}.

By ergodicity, 1 is the only fixed point of etWD , and hence ker(WD) is spanned by 1 /∈ BD
0 . This

implies that the range has dimension d2 − 1 = dimBD
0 , i.e. WD is surjective onto BD

0 , and the

restriction of WD onto BD
0 is injective. Hence WD is invertible on BD

0 , and we let W−1
D : BD

0 → BD
0

denote the inverse. Furthermore, the following limit exists:

−W−1
D = lim

t→∞

∫ t

0

TD,sds. (10)

IV. IDENTIFIABILITY OF CONTINUOUS QUANTUM MARKOV

PROCESSES

This section deals with the problem of characterising the equivalence classes of Markov

dynamics with identical stationary output states. We restrict ourselves to ergodic Markov

processes, although similar results are expected to hold more generally. Similar results have

been obtained in31 for discrete time quantum Markov processes.

Let Derg denote the open submanifold of D consisting of dynamical parameters for which

the associated Markov process is ergodic; this will be the relevant parameter set for subsequent

considerations. Note that Derg is indeed an open subset of D since ergodicity (i.e. non-zero

spectral gap and full rank stationary state) is preserved under small perturbations.

Definition 1. Two dynamical parameters D,D′ ∈ Derg are output-equivalent if the stationary

output states (9) of the associated continuous-time Markov processes are identical. We denote

the set of associated equivalence classes by P := {[D] : D ∈ Derg}.
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Of course, the same equivalence can be formulated for arbitrary parameters in D. However,

it turns out that when restricted to Derg, the equivalence classes have a simple characterisation

in terms of the following transformations:

(PM) Phase conjugation on the Hamiltonian:

(H,L1, . . . , Lk) 7→ (H + r1, L1, . . . , Lk), (r ∈ R).

(UC) Conjugation by system unitary W :

(H,L1, . . . , Lk) 7→ (W ∗HW,W ∗L1W, . . . ,W ∗LkW ).

Indeed, it is easy to verify that (PM) and (UC) do not change the output of the associated

continuous Markov process. The following Theorem shows that the converse is also true. The

details of the proof can be found in Appendix VIII.

Theorem 1. Let D,D′ ∈ Derg. Then D and D′ are output-equivalent if and only if they can be

obtained from each other via the transformations (UC) and (PM).

The interpretation of the result is that parameters along the equivalence classes described

by the transformations (UC) and (PM) are not identifiable, while the identifiable parameters

are “transversal” to these classes, as illustrated in Figure 2. It is now convenient to formulate

the equivalence classes in terms of an action of the appropriate Lie group G := PU(d)×R. On

Derg we use transformations (PM) and (UC) to set up the action:

G×Derg → Derg

(g,D) 7→ gD := (W ∗HW,W ∗L1W, . . . ,W ∗LkW ) + a(1, 0, . . . , 0), (11)

g = (W,a) ∈ PU(d)× R, D = (H,L1, . . . , Lk) ∈ Derg.

Here PU(d) = U(d)/U(1) is the projective unitary group, equipped with its unique Lie group

structure, and the above action is defined as the natural lift of the corresponding one for U(d).

The reason to use PU(d) instead of U(d) will become clear from the proof of the Lemma below.

The above theorem implies that the equivalence class [D] ∈ P is the orbit of D ∈ Derg under

the action of G, such that P can be identified with the quotient Derg/G. The following lemma

which relies on the ergodicity assumption, is essential for understanding the structure of the

quotient, as we will see below. In order to avoid confusion with the output equivalence, we

identify W ∈ PU(d) with a representative unitary operator without explicit indication.

Lemma 1. The Lie group action G×Derg → Derg is smooth, proper, and free.
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Proof. The action defined via (11) is clearly smooth with respect to W, and a, hence its lift

to the quotient Lie group PU(d) × R is smooth as well. Since the group PU(d) is compact,

and the rest is just a translation, it follows from elementary arguments that the smooth map

G × Derg → Derg × Derg given by (g,D) 7→ (gD,D) is proper, i.e. preimage of every compact

set is compact. This means that the action is proper. In order to show that the action is

free, we need to use ergodicity as follows: suppose that gD = g′D for some D, and g = (W,a),

g′ = (W ′, a′); then a direct computation similar to the one in the proof of Lemma 2 in Appendix

shows that WD(W ∗W ′) = i(a− a′)W ∗W ′. Since ergodicity requires

lim
τ→∞

eiτ(a−a′)W ∗W ′ = tr[W ∗W ′ρss]I,

we must have a = a′ and W ∗W ′ a multiple of the identity. But this exactly means that W

equals W ′ as an element of the projective unitary group; hence g = g′. This proves that the

action is free.

The fact that the group action preserves the equivalence classes, that is gD ∈ [D] for all

D ∈ Derg, can now be formulated in differential geometric terms. Indeed, using the standard

theory of Lie group actions on manifolds, we conclude from the above Lemma that the space

of output equivalence classes

P = {[D] : D ∈ Derg} = Derg/G

admits a unique smooth structure such that the quotient map π : Derg → P

π(D) = [D], for all D ∈ Derg,

is a submersion, and Derg is a principal G-bundle over P38. Here the equivalence classes [D] are

considered as fibres of the fiber bundle over the base manifold P , that is, the map π has the

local triviality property: each [D] ∈ P has an open neighbourhood U such that there exists a

diffeomorphism

φ : π−1(U)→ U ×G,

which is G-equivariant, i.e. φ(gD) = gφ(D) where G acts on U ×G as g([D], g′) := ([D], g′g−1).

The term principal G-bundle refers to the fact that the group action preserves the fibres.

We can now use this differential geometric framework to describe local changes of identifiable

parameters, via the tangent bundle T of the manifold Derg. In particular, the non-identifiable

parameter changes along the equivalence classes correspond to the vertical bundle over Derg

with the fibres

T nonid
D := ker π∗|D ⊂ TD, D ∈ Derg,
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where π∗|D is the push-forward tangent map of the canonical projection π at point D, and TD
is the full tangent space at that point.

The group action is reflected in two ways at the level of tangent spaces. On the one hand,

given any fixed g ∈ G, the push-forward g∗ of the map D 7→ gD maps the fibres into each other

as

g∗T nonid
D = T nonid

gD .

This push-forward is simply obtained by differentiating the parameters in the standard chart

g∗(Ḣ, L̇
1, . . . , L̇k) = (W ∗ḢW,W ∗L̇1W, . . . ,W ∗L̇kW ), g = (W,a).

On the other hand, for any fixed D, the push-forward of g 7→ gD defines a Lie algebra isomor-

phism

D∗ : g→ T nonid
D , (12)

so that different fibres all have the same dimension, which is that of the Lie algebra g. We

can now explicitly compute this action. First of all, the Lie algebra of G can be conveniently

written as

g = {(−iK, r) | K ∈Msa(Cd)/R1, r ∈ R} = {(−iK, r) | K ∈Msa(Cd), tr[ρssK] = 0, r ∈ R},
(13)

where the choice of the sign as well as the last identification is for later convenience. In

particular, the subspace of non-identifiable directions is in one-to-one correspondence with this

linear space. From this we already find the number of non-identifiable directions:

dim T nonid
D = d2 − 1 + 1 = d2.

We stress that this result is crucially based on ergodicity, which ensures that the action is free;

this is required for the push-forward D∗ to be an isomorphism. Now D∗ acts on an element

X = (−iK, r) ∈ g as

D∗(X) =
d

dt
(exp(t (−iK, r))D)|t=0

=
d

dt

(
(eitKHe−itK , eitKL1e−itK , . . . , eitKLke−itK) + t r(1, 0, . . . , 0)

)
|t=0

= (i[H,K], i[L1, K], . . . , i[Lk, K]) + r(1, 0, . . . , 0). (14)

Having now characterised the vertical bundle T nonid of non-identifiable directions, an obvious

question arises: is there a natural way to choose complementary subspaces for identifiable

directions in each fibre? This means choosing subspaces T id
D such that

TD = T nonid
D ⊕ T id

D , D ∈ Derg.
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If the subspaces are chosen smoothly, i.e. so as to define a fibre bundle T id over Derg, the result

is called a horizontal bundle T id, and in case it respects the group action, that is

g∗T id
D = T id

gD, (15)

it defines an principal connection on the manifold Derg.

There is a natural way of defining a principal connection via its associated connection one-

form; since this approach turns out to be relevant in our situation, we briefly explain the idea

in the general level. As we have shown above, any Ḋ ∈ T nonid
D can be generated by the action

of the Lie algebra; Ḋ = D∗(X) for some X ∈ g. Now suppose that we can associate to every

tangent vector Ḋ ∈ TD an element ωD(Ḋ) ∈ g which somehow describes the “part” of the

parameter that results from the non-identifiable group action. Such a map should define a

one-form ωD : T → g satisfying the compatibility condition (sometimes called nondegeneracy)

Ḋ = D∗(ωD(Ḋ)), Ḋ ∈ T nonid
D , (16)

and the G-covariance condition

g∗ω = Adg−1 ◦ ω, (17)

where g∗ is the pull-back of the action by g on the cotangent bundle, which simply acts

as g∗ω(Ḋ) = ωgD(g∗Ḋ) = ωgD(W ∗ḊW ) for g = (W,a), and the adjoint action is given by

Adg−1(X) = (W ∗XW, r + a).

Given such a map, we can then define the ”back-action” D∗◦ωD on the tangent space; due to

the above compatibility condition, the back-action is a special projection of the tangent space

onto the subspace T nonid
D . Hence, we can use its complementary projection

PD := Id− D∗ ◦ ωD

to define the above horizontal bundle and the associated principal connection via

T id
D := ranPD.

Indeed, the condition (15) holds because of (17). The map ω is called the connection one-form,

and P is the horizontal projection.

Any principal connection gives a possible way of extracting the parameter changes relevant

for our system identification problem. In the next section we show that there is actually a

natural connection associated with the information geometric structure of the problem, given

by the Fisher information of the output state. We will obtain it by explicitly constructing the

associated connection one-form, which arises neatly from the quantum Ito calculus.
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V. INFORMATION GEOMETRY FOR DYNAMICAL PARAMETER

ESTIMATION FROM THE OUTPUT STATE

Our goal is to describe quantitatively the precision with which unknown dynamical param-

eters can be estimated by making measurements on the output state. As noted above, we will

restrict our attention to dynamical parameters D which belong to the open subset Derg of D of

ergodic Markov dynamics. As we will consider this problem in the limit of large times, the rel-

evant dynamical regime is the stationary one; moreover, the statistical properties of the output

state can be understood locally, by focusing on a shrinking neighbourhood of the parameter

manifold Derg whose size is of the order of the statistical uncertainty13,31. This will lead to

the concept of local asymptotic normality discussed in section VII. In this section however,

we focus on the information geometry of the system identification problem, more precisely on

the quantum Fisher information matrix of the output state and its asymptotic behaviour, and

its relationship with the covariance of certain quanta stochastic integrals called “fluctuation

operators”. We will start by introducing the latter in a general set-up and then show how the

former fits in this theory.

Section V A derives the quantum Fisher information of the system-output state as covari-

ance of certain “generators”; section V B analyses more general “fluctuation operators” and

looks at their Markov covariance; section V C deals with the information geometry structure,

and connects the previous constructions, in particular it provides an explicit expression of the

quantum Fisher information; section V D constructs an algebra of canonical commutation re-

lations (multimode continuous variables system) and a family of coherent states which will be

relevant later on for the local asymptotic result.

A. Quantum Fisher information of a parametric model

We pass now to a statistical setting where the dynamical parameter D is considered to be

unknown. The changes in D are encoded in its (partial) derivatives Ḋ = (Ḣ, L̇1, . . . , L̇k), which

will be seen as vectors in the tangent space TD to Derg at the point D. Since the dynamics

is ergodic, the system converges to a unique stationary state ρDss for large times, and we will

denote by 〈·〉ss the expectation with respect to the state ρDss ⊗ |Ω〉〈Ω|. In this subsection we

consider a generic statistical model and analyse the quantum Fisher information (QFI) of the

output state; we will show that the QFI grows linearly with time and the rate can be expressed

in terms of the Markov covariance inner product introduced below. Let

Rm 3 θ 7→ Dθ.
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be a smooth family of dynamics parametrised by an unknown parameter θ ∈ Rm which may be

thought to encode our prior knowledge about the dynamics. In this subsection we work with

this parametrisation, and hence identify Dθ with θ for simplicity. Note that this could be a

complete parametrisation of Derg. The directional derivatives of Dθ are defined as

Ḋθ,a :=

(
∂H

∂θa
,
∂L1

∂θa
, . . . ,

∂Lk

∂θa

)
= (Ḣθ,a, L̇

1
θ,a, . . . , L̇

k
θ,a) ∈ TDθ .

Recall that the QFI of an arbitrary multiparameter (smooth) family of pure states |ψθ〉 with

θ ∈ Rm, is the m×m positive real matrix with elements11

F θ
a,b = 4Re

(〈
∂ψθ
∂θa

∣∣∣∣
∂ψθ
∂θb

〉
−
〈
ψθ

∣∣∣∣
∂ψθ
∂θb

〉〈
∂ψθ
∂θa

∣∣∣∣ψθ
〉)

, 1 ≤ a, b ≤ m.

We apply this formula to the output state |Ψs+o
θ (t)〉 := Uθ(t)|ϕ ⊗ Ω〉 generated with a θ-

dependent dynamical parameter Dθ, cf. equation (9). By differentiating with respect to θa we

get

U∗θ (t)
∂

∂θa

∣∣Ψout
θ (t)

〉
= U∗θ (t)U̇θ,a(t)|ϕ⊗ Ω〉, U̇θ,a(t) :=

∂Uθ(t)

∂θa
. (18)

We will now show that the generator −iGθ,a(t) := U∗θ (t)U̇θ,a(t) can be written as a quantum

stochastic integral. From (4) we have

dU∗θ (t) = U∗θ (t)

(∑

i

(−LiθdA∗i (t) + Li∗θ dAi(t))− (−iHθ +
1

2

∑

i

Li∗θ L
i
θ)dt

)
,

dU̇θ(t) =

(∑

i

(L̇iθ,adA
∗
i (t)− L̇i∗θ,adAi(t))− (iḢθ,a +

1

2

∑

i

(L̇i∗θ,aL
i
θ + Li∗θ L̇

i
θ))dt

)
Uθ(t)

+

(∑

i

(LiθdA
∗
i (t)− Li∗θ dAi(t))− (iHθ +

1

2

∑

i

Li∗θ L
i
θ)dt

)
U̇θ(t).

Therefore, by applying the Ito rule (3) we get

dU∗θ (t) · dU̇θ,a(t) = Uθ(t)
∗
∑

i

Li∗θ

(
L̇iθ,aU(t) + LiθU̇θ(t)

)
dt.

and using (2) we obtain an explicit differential expression for the generator

dGθ,a(t) = id(U∗θ (t)U̇θ,a(t))

= i
∑

i

(
jθ,t(L̇

i
θ,a)dA

∗
i (t)− jθ,t(L̇i∗θ,a)dAi(t)

)
+ jθ,t

(
Ḣθ,a + Im

∑

i

L̇i∗θ,aL
i
θ

)
dt

= i
∑

i

(
jθ,t(L̇

i
θ,a)dA

∗
i (t)− jθ,t(L̇i∗θ,a)dAi(t)

)
+ jθ,t

(
Eθ(Ḋθ,a)

)
dt (19)

where Eθ = EDθ is the real linear map ED : TD →Msa(Cd) given by

ED(Ḋ) := Ḣ + Im
k∑

i=1

L̇i∗Li. (20)
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Later on we will see that this map turns out to play a crucial role in the construction of the

horizontal bundle for the identifiable parameters, and in the definition of the CCR algebra in

section V D.

The QFI can be written in terms of the covariance matrix of the generators Gθ,b(t)

F θ
a,b(t) = 4Re

(
〈ϕ⊗ Ω|G∗θ,a(t)Gθ,b(t)|ϕ⊗ Ω〉 − 〈ϕ⊗ Ω|G∗θ,a(t)|ϕ⊗ Ω〉〈ϕ⊗ Ω|Gθ,a(t)|ϕ⊗ Ω〉

)
.

where the second term stems from the fact that Gθ,b(t) have non-zero mean. The generators are

in fact not uniquely defined: since dAi(t) annihilates the vacuum state, arbitrary annihilation

integrals can be added, while terms proportional to the identity produce only unphysical com-

plex phases which do not change the state. We will therefore define a modified (non-selfadjoint)

generator which “centres” Gθ,b(t) for large times, and lacks annihilations terms so that it is con-

sistent with the definition of “fluctuation operators” introduced in the next subsection. The

modified generator is given by the quantum stochastic integral with differential form

dG0
θ,a(t) = i

k∑

i=1

jt(L̇
i
θ,a)dA

∗
i (t) +

(
jθ,t(EDθ(Ḋθ,a))− Tr

(
ρDssEDθ(Ḋθ,a)

))
dt. (21)

By ergodicity, its rescaled mean converges to zero

lim
t→∞

1

t
〈ϕ⊗ Ω|G0

θ,a(t)|ϕ⊗ Ω〉 = 0

For large times, the QFI matrix elements scale linearly with t and the leading contribution is

given by the quantum Fisher information rate

f θa,b := lim
t→∞

F θ
a,b(t)

t
= lim

t→∞

1

t
4Re〈ϕ⊗ Ω|G0∗

θ,a(t)G
0
θ,b(t)|ϕ⊗ Ω〉. (22)

In the next section we prove the linear scaling and find an explicit expression of the QFI rate.

B. Fluctuation operators and the Markov covariance form

Our goal is now to formulate the QFI rate (22) in terms of certain quantum fluctuation

operators, and subsequently compute it using quantum stochastic calculus. These fluctuation

operators can be formulated in a slightly more general setting, which is naturally complex

linear instead of real linear, and is also independent on the map ED special to our setting. The

dynamical parameter D will remain fixed throughout the section.

Recall that for any X ∈ M(Cd) we let jD,t(X) denote the Heisenberg evolved system

observable defined by the Langevin equation (6). For an arbitrary (k + 1)-tuple X :=

(X0, X1, . . . , Xk) ∈ M(Cd)1+k we define the associated centered fluctuation operator by the
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quantum stochastic integral

FD,t(X) =
1√
t

∫ t

0

(
i

k∑

i=1

jD,s(X
i)dA∗i (s) + jD,s ◦ CD(X0)ds

)
, (23)

where the map

CD(X) := X − tr[ρDssX]1

“centers” the stationary mean of FD,t(X) to zero:

〈FD,t(X)〉ss =
1√
t

∫ t

0

tr[ρDssTD,s(X
0 − tr[ρDssX

0]1)]ds =
1√
t

∫ t

0

tr[ρDss(X
0 − tr[ρDssX

0]1)]dt = 0.

The proof of the following crucial result is based on quantum Ito calculus, and can be found in

the Appendix.

Proposition 1 (Markov covariance for fluctuation operators). The following limit exists,

is independent of the unit vector |ϕ〉 ∈ H, and defines a positive sesquilinear form (·, ·)D on the

complex linear space M(Cd)1+k via

(X,Y)D := lim
t→∞
〈ϕ⊗ Ω|FD,t(X)∗FD,t(Y)|ϕ⊗ Ω〉 =

k∑

i=1

tr
[
ρDssRD(X)i∗RD(Y)i

]
,

where

RD(X) = (CD(X0), X1, . . . , Xk)− LD ◦W−1
D ◦ CD(X0), and

LD(X) =
(
WD(X), i[L1, X], . . . , i[Lk, X]

)
.

We call (·, ·)D the Markov covariance inner product.

From this proposition it is clear that the map RD plays a central role; in particular, since

ρDss has full rank, the kernel of the Markov covariance coincides with kerRD. Also the range of

RD turns out to be relevant. These subspaces can be characterised explicitly as follows.

Proposition 2. The operator RD is a projection, i.e. R2
D = RD, with range and kernel

kerRD =
{

(WD(K) + r1, i[L1, K], . . . , i[Lk, K])
∣∣K ∈M(Cd), r ∈ C

}
,

ranRD =
{(

0, Y 1, . . . , Y k
) ∣∣∣Y 1, . . . , Y k ∈M(Cd)

}
.

Proof. First of all, X ∈ kerRD if and only ifX i = i[Li,W−1(X0−tr[ρDssX
0]1)] for all i = 1, . . . , k.

Since tr[ρDssWD(K)] = 0 for any K, the given form of the kernel follows. The range is clear

from the definition, and the property R2
D = RD is straightforward to check.
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C. Markov covariance from a principal connection

We now proceed to show how the Markov covariance is naturally associated with a specific

horizontal bundle for the principal G-bundle Derg, and we also define a Riemannian metric on

the manifold Derg. In order to motivate this, we continue the the discussion from subsection

V A. Indeed, the modified generator (21) can be expressed as a fluctuation operator

G0
θ,a(t) =

√
tFt(XD(Ḋθ,a)),

where we have used the suggestive notation XD for the real linear isomorphism

XD : TD →Msa(Cd)×M(Cd)k (24)

Ḋ = (Ḣ, L̇1, . . . , L̇k) 7→ (ED(Ḋ), L̇1, . . . , L̇k), (25)

where M(Cd)k is now considered as a real linear space with dimension 2kd2, while Msa(Cd) is

naturally a real linear space. Therefore, using the explicit expression provided in Proposition

1, we obtain the following expression of the QFI rate (22) in the coordinates D = Dθ used in

subsection V A:

f θa,b = 4Re
(
XD[Ḋθ,a] , XD[Ḋθ,b]

)
D

= 4
k∑

i=1

Re tr
[
ρDss

(
L̇iθ,a − i[Liθ,W−1

D ◦ E0
D(Ḋθa)]

)∗ (
L̇iθ,b − i[Liθ,W−1

D ◦ E0
D(Ḋθb)]

)]
, (26)

where E0
D = CD ◦ ED. The QFI rate inherits the positivity property of the Markov covariance,

but also the fact that it may not be positive definite. In conclusion, the real part of the form

(Ḋ, Ḋ′)D := (XD[Ḋ],XD[Ḋ′])D (27)

has a natural interpretation in terms of the output Fisher information. Its explicit form (see

Proposition 1) suggests the definition of the following projection on the tangent bundle over

Derg:

P : T → T , PD = X−1
D ◦RD ◦XD. (28)

Indeed, the bilinear form essentially depends on this projection:

(Ḋ, Ḋ′)D =
k∑

i=1

tr
[
ρDss[PD(Ḋ)i]∗ PD(Ḋ′)i

]
.

In order to understand the intuitive meaning of PD, we now proceed to make a fundamental

observation concerning the relation between the push-forward map D∗ defined in (12), and the

map ED defined in (20):

ED ◦ D∗(X) = r1 + WD(K), X = (−iK, r). (29)
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This relation has appeared before in a different context3. In order to verify it, we recall that

D∗(−iK, r) = (i[H,K] + r1, i[L1, K], . . . , i[Lk, K]), so that

ED(D∗(−iK, r)) = i[H,K] + r1 +
1

2i

k∑

i=1

(
(i[Li, K])∗Li − Li∗(i[Li, K])

)

= r1 + i[H,K]− 1

2

k∑

i=1

(
[K,Li∗]Li + Li∗[Li, K]

)

= r1 + iHK − iKH − 1

2

k∑

i=1

(KLi∗Li − Li∗KLi + Li∗LiK − Li∗KLi)

= r1− iK
(
H − i

2

∑

i

Li∗Li

)
+ i

(
H +

i

2

∑

i

Li∗Li

)
K +

∑

i

Li∗KLi

= r1 + WD(K).

Equation (29) is the key to defining the horizontal bundle for the identifiable parameters.

Indeed, we get the following crucial result:

Proposition 3 (Principal connection). The map ω : TD → g, defined by

ωD(Ḋ) = (−iW−1
D ◦ CD ◦ ED(Ḋ), tr[ρDssED(Ḋ)]),

is the one-form of a unique principal connection on Derg, having PD as its horizontal projection.

In particular, PD = Id− D∗ ◦ ωD, with the vertical subspaces kerPD = ranD∗ = T nonid
D , so this

connection is compatible with the vertical bundle defining the ”non-identifiable directions”.

Proof. We first verify the important relation PD = Id−D∗ ◦ωD. Denote K = W−1
D ◦ CD ◦ ED(Ḋ)

and r = tr[ρDssED(Ḋ)], so that CD(ED(Ḋ)) = WD(K). On the one hand, using the formulas of

RD and LD in Proposition 1, we get

RD(XD(Ḋ)) = RD(ED(Ḋ), L̇1, . . . , L̇k) =
(
CD(ED(Ḋ)), L̇1, . . . , L̇k

)
− LD

(
W−1

D (CD(ED(Ḋ))
)

= (WD(K), L̇1, . . . , L̇k)− LD(K) = (0, L̇1 − i[L1, K], . . . , L̇k − i[Lk, K]).

On the other hand, ωD(Ḋ) = (−iK, r) by definition, so using the formula (14) of the push-

forward D∗, we get

(Id− D∗ ◦ ωD)(Ḋ) = (Ḣ − i[H,K]− r1, L̇1 − i[L1, K], . . . , Lk − i[Lk, K]).

The crucial equation (29) gives ED(D∗(ωD(Ḋ))) = WD(K) + r1, and hence

ED
(
Ḋ− D∗(ωD(Ḋ))

)
= ED(Ḋ)− r1−WD(K) = CD(ED(Ḋ))−WD(K) = 0.

Consequently,

XD

(
Ḋ− D∗(ωD(Ḋ))

)
= (0, L̇1 − i[L1, K], . . . , Lk − i[Lk, K]) = RD(XD(Ḋ)),
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showing that XD ◦ (Id−D∗ ◦ ωD) = RD ◦XD. By the definition of PD in (28), this implies that

PD = Id− D∗ ◦ ωD.

For a given X = (−iK, r) ∈ g we can clearly find Ḋ such that r = tr[ρDssED(Ḋ)] and

CD(ED(Ḋ)) = WD(K), and hence the range of the one-form ωD fills the whole Lie algebra. Fur-

thermore, we can easily verify the compatibility condition (16), and G-covariance (17) follows

from the fact that

EgD(g∗(Ḋ)) = W ∗ED(Ḋ)W, ρgDss = W ∗ρDssW, g = (W,a) ∈ G, (30)

which is straightforward to check. This completes the proof.

With this result we therefore achieve the aim described at the end of section IV by defining

the subspace of the identifiable directions to be the horizontal subspace:

T id
D := ranPD = {Ḋ | E(Ḋ) = 0}.

The associated split TD = T nonid
D ⊕ T id

D now follows immediately from the general theory; in

particular, the number of identifiable parameters is

dim T id
D = 2kd2.

As a consequence of the G-invariance of the horizontal projection, the form (·, ·)D on TD is

G-invariant in the sense that

(Ḋ, Ḋ′)D = (g∗Ḋ, g∗Ḋ
′)gD, Ḋ, Ḋ′ ∈ T idD , g ∈ G. (31)

Hence, this form only depends on the equivalence class, so its real part determines a unique

bilinear form on the base manifold P . Moreover, it also only depends on the horizontal projec-

tion PD(Ḋ) of the tangent vectors; hence it becomes nondegenerate on the horizontal bundle,

thereby defining a Riemannian metric on the base manifold P .

We emphasise that the principal connection (together with the stationary state), completely

determines the metric and the associated Fisher information. In this way the connection pro-

vides geometric insight on how the (in practice rather complicated) expression of the Fisher

information arises; for a discussion on a classical analogy, see e.g.35. We demonstrate this in a

concrete example in section VI below.

D. Symplectic structure and CCR-algebra for identification

In Proposition 1 we defined the Markov covariance on the complex linear space M(Cd)k+1,

and used the real linear maps

XD : TD →M(Cd)k+1
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to induce an associated real inner product (·, ·)D on the identifiable part of the tangent space,

cf. equation (27); up to a constant factor, this inner product is the QFI rate. It is then

natural to ask if the imaginary part of the Markov covariance has any physical interpretation.

We will show that the latter can be used to define an algebra of the canonical commutation

relations (CCR) over the real space of identifiable parameters T idD , which will play the role of

limit Gaussian model in the next section.

On the real linear space T id
D = {Ḋ | ED(Ḋ) = 0} = ranPD we now define a complex structure

via

JD : T idD → T idD

JD : (Ḣ, L̇1, . . . , L̇k) 7→
(

k∑

i=1

ReL̇i∗Li , iL̇1, . . . , iL̇k

)
. (32)

Using the property that ED(Ḋ) = 0 for all vectors Ḋ ∈ T idD , it is easy to check that JD satisfies

the defining property of a complex structure on T idD , i.e. J 2
D = −Id. Furthermore, since

PD = X−1
D ◦RD ◦XD, we immediately see from Proposition 2 that

XD[JD(Ḋ)] = iXD[Ḋ] = (0, iL̇1, . . . , iL̇k), Ḋ ∈ T idD ,

that is, the map XD is compatible with the natural complex structure of M(Cd)k+1. In fact,

this is the only way of defining a complex structure on T idD in such a way that the restriction

of XD to T idD is a complex linear map.

When endowed with the complex structure JD, the space T id
D becomes a complex linear space;

this is Hilbert space with respect to the inner product induced by the Markov covariance:

(Ḋ, Ḋ′)D :=
(
XD(Ḋ) , XD(Ḋ′)

)
D
, Ḋ, Ḋ′ ∈ T idD . (33)

The real part of this form gives the Riemannian metric and QFI rate on the real linear tangent

space T id
D as discussed above. In addition, the imaginary part can be used to construct a repre-

sentation of the canonical commutation relations (CCR) over T idD , together with a distinguished

Fock state whose statistical interpretation is discussed in section VII.

Definition 2 (CCR algebra for identifiable parameters). Let (T idD ,JD) and (Ḋ, Ḋ′)D be

the complex linear space, and respectively inner product defined above. On T idD we define the

symplectic form

σD(Ḋ, Ḋ′) := Im(Ḋ, Ḋ′)D =
k∑

i=1

Im tr[ρDssL̇
∗
i L̇
′
i]

We define the CCR algebra CCR(T idD , σD) generated by unitary Weyl operators W (Ḋ) with

Ḋ ∈ T idD satisfying the relations

W (Ḋ)W (Ḋ′) = eiσ
D(Ḋ,Ḋ′)W (Ḋ + Ḋ′), W (−Ḋ) = W (Ḋ)∗,
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On CCR(T idD , σD) we define the Gaussian state ϕ determined by the characteristic function

ϕ(W (Ḋ)) = e−
1
8
fD(Ḋ,Ḋ)

where

fD(Ḋ, Ḋ′) := 4Re(Ḋ, Ḋ′)D = 4Re
∑

i

tr[ρDssL̇
∗
i L̇
′
i]. (34)

By a standard construction47, the CCR algebra can be represented on the Fock space FD over

the Hilbert space (T idD ,JD, (Ḋ, Ḋ
′)D), in such a way that that ϕ(W (Ḋ)) = 〈0|W (Ḋ)|0〉, where

|0〉 ∈ FD is the vacuum state, and the Weyl operators W (Ḋ) can be written in terms of canonical

quadrature operators Qj, Pj satisfying the Heisenberg form of the CCR [Qk, Pk′ ] = iδkk′1.

In order to explicitly find such a representation, we need to choose a symplectic basis

{Ḋ1, . . . , Ḋ2m} of T idD (recall that m = dim T idD = 2kd2) which is also compatible with the

complex structure. This means that fD(Ḋj, Ḋj′) = δjj′ for all j, and JD(Ḋ2j+1) = Ḋ2j+2,

σD(Ḋ2j+1, Ḋ2j′+1) = σD(Ḋ2j+2, Ḋ2j′+2) = 0, σD(Ḋ2j+1, Ḋ2j′+2) = δjj′ for j = 0, . . . ,m − 1.

We then define the canonical operators Qj, Pj as generators of the one-parameter groups

W (uḊ2j+1) = e−iuPj and W (uḊ2j+2) = eiuQj . In the generic case, the basis will depend

smoothly on the coordinates.

A fairly canonical choice for the basis is obtained by first defining the rank-1 matrices

Ej;l =
1√
pDl
|j〉〈ϕD

l |,

where pDl and ϕD
l , l = 1, . . . , d are eigenvalues and eigenvectors of the stationary state, counted

according to their multiplicities. We then define

Ḋi;j;l := (−ImE∗j,lL
i, 0, . . . , 0, Ej;l, 0, . . . , 0) ∈ T idD

for each i = 1, . . . , k and j, l = 1, . . . , d, where the nonzero element in the middle is at the

ith place. Then JD(Ḋi;j;l) = (ReE∗j,lL
i, 0, . . . , 0, iEj;l, 0, . . . , 0), and it is easy to check that

{Ḋi;j;l,JD(Ḋi;j;l)} is a symplectic basis compatible with the complex structure, and depends

smoothly on the coordinates (since the stationary state does), except possibly at some special

points. However, the explicit expressions of these vectors are often rather lengthy and compli-

cated. In the two-parameter example below we will demonstrate the geometry using a more

tractable basis.

The main point of the above construction is that an arbitrary local parameter change can

be associated to a linear combination of quadratures “generating” it in the effective continuous

variable system. We expect that using Local Asymptotic Normality (Section VII), together

with a suitable variant of the Central Limit Theorem (which will be the topic of a forthcoming

publication), this observation generator can be used to find an optimal output measurement

strategies for the system identification problem.
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VI. EXAMPLES OF PARAMETRIC MODELS

To illustrate the general theory we analyse several examples of one-parameter and multi-

parameter models.

A. One parameter models

Let Dθ := (H, e−iθL) be a one-parameter family, where we have chosen m = 1 for simplicity.

The corresponding one-dimensional tangent vector at Dθ=0 is Ḋ = (0, iL). By applying equation

(18) we find that the corresponding generator has differential equation

dGθ(t) =
k∑

i=1

[jt(L)dA∗(t) + jt(L
∗)dA(t) + jt(L

∗L)dt] (35)

Then E0
D(Ḋ) = (−L∗L+ 〈L∗L〉ss1), and XD(Ḋ) = (E0

D(Ḋ), iL). The QFI rate is

f θ = 4tr
[
ρDss
(
L+ [L,W−1(L∗L− 〈L∗L〉ss1)]

)2
]
.

Physically, this transformation can be implemented by placing a phase-shifter in each output

channel, which gives each photon a phase shift eiθ44. This phase parameter is identifiable, and

it is easy to see that

|Ψs+o
θ (t)〉 = exp(−iθN(t))|Ψs+o(t)〉

where N(t) is the counting process associated to the number of photons up to time t in the

Bosonic environment. Equivalently, this can be written as U∗(t)|Ψs+o
θ (t)〉 = exp(−iθNout(t))|φ⊗

Ω〉 where Nout(t) := U(t)∗N(t)U(t), is the output number of photons operator, whose differen-

tial form is

Nout(t) = dN(t) + jt(L)dA∗(t) + jt(L
∗)dA(t) + jt(L

∗L)dt. (36)

By comparing (35) and (36) we see that the two generators are not identical. However, the

difference is the term dN(t) which annihilates the vacuum state, so the resulting action of the

generators is identical. This illustrates that in general the generator is not unique but one can

add terms which annihilate the vacuum, such as annihilation or number operator terms.

The second example we consider is that of the coupling constant, where Lθ = θL, with

unknown parameter θ ∈ R. The tangent vector is Ḋ := (0, L), and E0
D(T ) = 0. Therefore,

XD(Ḋ) = (0, L) and the QFI rate is

f = 4tr
[
ρDssL

∗L
]
.

which is simply the photon emission rate in the stationary regime.
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In the third example we consider the model where the hamiltonian is known up to a mul-

tiplicative constant Hθ = θH. The tangent vector is Ḋ := (H, 0), and E0
D(T ) = H − 〈H〉ss.

Therefore, XD(Ḋ) = (H − 〈H〉ss, 0) and the QFI rate is

4tr
(
ρDss[L,W−1(H − 〈H〉ss)]∗[L,W−1(H − 〈H〉ss)]

)
.

B. Simplest multiparameter setting

The geometric aspects are naturally trivial in a one-parameter model. In order to illustrate

the full use of the theory developed above, we now consider the simplest nontrivial setting with

d = 2 and k = 1, that is, Derg is the open subset of {(H,L) | H ∈ Ms(C2), L ∈ M(C2)}
consisting of ergodic dynamical parameters. The dimension of this manifold is 12, and the

number of identifiable parameters is 8. Hence, full treatment of this simplest setting is still

rather tedious, and we settle for looking at points on a physically relevant submanifold, extended

suitably so as to allow for the full description of the relevant geometry. The model is the

following 7-dimensional submanifold:

H∆,Ω,v =
1

2


 ∆ Ω + v1 − iv2

Ω + v1 + iv2 −∆ + v0


 , Lα,θ,v = αeiθ


(iv1 − v2)/α2 1 + iv0/α

2

0 (−iv1 + v2)/α2


 .

Here the three parameters v are auxiliary, and the rest have physical meaning at v = 0. In

fact, we are looking at the off-resonant laser-driven two-level system with Rabi frequency Ω and

detuning ∆, in contact with a zero-temperature heat bath, with emission rate α2, and emitted

photons monitored on the environment. In addition, we include the above discussed phase shift

θ to the emitted photons. The auxiliary parameters are chosen such that their tangent vectors

lie in the identifiable subspace at v = 0; their span is needed in order to describe the horizontal

projections of the physical tangent vectors, as we will see below.

The quantum Fisher information associated with the three parameters (∆,Ω, α) of this

model has been compared with particular measurement strategies22; we emphasise geometric

aspects not discussed there, and have also included the phase parameter θ. The main idea is

to demonstrate how the rather complicated expressions of the Fisher information arise from

considerably simpler geometric ingredients as a result of straightforward linear algebra. This

provides insight on the structure of the physical system from the operational identification point

of of view, and may eventually be useful in developing global estimation strategies in analogy

to classical cases (see e.g.35).

Accordingly, we let Dext denote the whole (extended) 7-dimensional manifold, and Dphys =

{D ∈ Dext | v = 0} the physical submanifold. The dynamical parameters D ∈ Dphys are ergodic
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D

TD(Dphys)

T id
D (Dext)

Ḋ⌦

Ḋ↵

PD(Ḋ⌦)

FIG. 4. Sketch of the information geometry of two parameters in the driven two-level system. The

tangent space of the physical manifold contains the directions of the decoupling parameter α and the

driving frequency Ω (in red). Only the α-direction lies in the identifiable subspace which supports the

Fisher information metric; Ω-direction needs to be projected there via the horizontal projection PD of

the principal connection.

except at special points; the unique stationary state is

ρss =
Ω

γ


 γ/Ω− Ω ξ

ξ Ω


 ,

where γ = α4 +4∆2 +2Ω2 and ξ = 2∆+iα2. In the following we only consider points D ∈ Dphys.

1. The Lie algebra and unidentifiable directions

We begin the description of the geometry by finding the unidentifiable part of the tangent

space of the physical manifold. We let Eij denote the natural basis matrices of M(C2), so that

e.g. σz = E00 − E11. Note that matrices such as Eij and iEij are linearly independent, since

we look at the real linear version of M(C2). We parametrise the Lie algebra by

g = {X[w, r] | w ∈ R3 , r ∈ R},

where X[w, r] = (−iKw, r), with Kw = f(w)1 + w · σ, and the “gauge” function f(w) is

irrelevant for the action of Lie algebra on the parameter manifold. As discussed above, this

gauge can be fixed so that Kw has zero mean; this is convenient since the back-action given by

the connection one-form will automatically have this gauge. The zero mean gauge for the Lie

algebra is

f(w) = −γ−1
(
4∆(w1Ω + ∆w3)− 2α2w2Ω + α4w3

)
.
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In order to describe the action of the Lie algebra on the tangent space, we compute explicitly

the image of the push-forward D∗, corresponding to the unidentifiable part of the tangent space.

Omitting the subscript for simplicity, the tangent vectors induced by basic rotations and the

unidentifiable phase are

Ḋnonid
x := D∗(X[(1, 0, 0), 0]) = (−∆σy, iαe

iθσz) Ḋnonid
y := D∗(X[(0, 1, 0), 0]) = (∆σx − Ωσz,−αeiθσz)

Ḋnonid
z := D∗(X[(0, 0, 1), 0]) = (Ωσy,−2αieiθE01) Ḋnonid

phase := D∗(X[(0, 0, 0), 1]) = (1, 0).

2. Symplectic structure of the identifiable subspace

The 8-dimensional identifiable subspace supports the principal connection and Markov co-

variance. It is characterised by the condition E(Ḋ) = 0. Using this condition, one easily finds

the following basis for this subspace:

Ḋ1 = (0, eiθE01/α), Ḋ3 = (σx/2, ie
iθσz/α), Ḋ5 = (0, E10), Ḋ7 = (0, E11)

Ḋ2 = (E11, ie
iθE01/α), Ḋ4 = (σy/2,−eiθσz/α), Ḋ6 = (0, iE10), Ḋ8 = (0, iE11).

This basis is compatible with the complex structure in the sense that JD(Ḋ2k+1) = Ḋ2k+2 for

k = 0, . . . , 3. We observe that the first pair on the left depends on the parameters, the second

also exhibits nontrivial dependencies between the Ḣ and L̇ matrices, and the pairs on the right

are trivial. In fact, Ḋ2, Ḋ3, Ḋ4 are exactly the tangent vectors of the auxiliary parameters

v, and it turns out that the vectors Ḋ5, . . . , Ḋ8 are irrelevant for the physical model. The

Markov covariance can be directly computed on this part of of the identifiable subspace; the

corresponding matrix M is given by

Mij := (Ḋi, Ḋj)D = tr[ρDssL̇
∗
i L̇j],

where j indexes the basis vectors. However, a better choice is to replace the first four vectors

by

Ḋsym
1 =

α
√
γ

Ω




0 0

0 0


 ,

eiθ

α


0 1

0 0




 , Ḋsym

3 =
α
√
γ√

2Ω2




 0 −iΩ/2
iΩ/2 α2


 ,

eiθ

α


−Ω ξ

0 Ω






Ḋsym
2 =

α
√
γ

Ω




0 0

0 1


 ,

eiθ

α


0 i

0 0




 , Ḋsym

4 =
α
√
γ√

2Ω2




 0 −Ω/2

Ω/2 2∆


 ,

eiθ

α


−iΩ iξ

0 iΩ




 .

Now JD(Ḋsym
2k+1) = Ḋsym

2k+2 for k = 0, 1 still holds, but in addition the Markov covariance (re-

stricted to the relevant subspace) is in the standard form

M =


1 0

0 1


⊕


1 0

0 1


+ i


 0 1

−1 0


⊕


 0 1

−1 0


 .
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This means that we have a symplectic basis which is also compatible with the complex structure.

In particular, the two vectors Ḋsym
1 and Ḋsym

3 , regarded as complex vectors (in the sense of their

second component matrices), while orthonormal with respect to the Markov covariance, and

Ḋsym
2 = JD(Ḋsym

1 ) and Ḋsym
4 = JD(Ḋsym

3 ) is obtained from them by multiplying the second

component matrices by i. Observe that the relationship between the first component matrices

is not simply a multiplication by i; the induced complex structure JD is nontrivial on this part.

In the CCR-algebra, the pairs (Ḋsym
1 , Ḋsym

2 ) and (Ḋsym
3 , Ḋsym

4 ) correspond to pairs of quadra-

tures (Q1, P1) and (Q2, P2) satisfying the canonical commutation relations [Qk, Pl] = iδkl1. In

fact, the correspondence is given by the Weyl operators W (uḊsym
1 ) = e−iuP1 , W (uḊsym

2 ) = eiuQ1 ,

W (uḊsym
3 ) = e−iuP2 , and W (uḊsym

4 ) = eiuQ2 , u ∈ R. This means, for instance, that parameter

changes along the tangent vector Ḋsym
1 are generated by the “momentum operator” P1 in the

effective continuous variable system. A generating operator for any tangent vector can be found

by writing the tangent vector in this basis.

3. The connection on the physical manifold

In order to investigate the geometry of the physical manifold, we first find the tangent space

T (Dphys) ⊂ T , consisting of meaningful directions in the model. It is the span of the following

tangent vectors:

ḊΩ = (1
2
σx, 0), Ḋ∆ = (1

2
σz, 0),

Ḋα = (0, eiθE01), Ḋθ = α(0, ieiθE01).

These vectors span a 4-dimensional subspace of T ; note that the dependence on the manifold

point only comes with the phase parameter θ. We can now determine the connection one-form

on the physical manifold; this is a straightforward computation involving the inversion of the

generator W on the zero-mean subspace. The result is

ω = ω(Ḋ∆)d∆ + ω(ḊΩ)dΩ + ω(Ḋα)dα + ω(Ḋθ)dθ,

where the components are given by

ω(Ḋ∆) = γ−1X[−α−2(4∆Ω, 2Ωα2, |ξ|2), |ξ|2/2]

ω(ḊΩ) = 2γ−1X[−α−2(α4 + 2Ω2,−2∆α2, 2∆Ω),∆Ω]

ω(Ḋα) = 0

ω(Ḋθ) = −γ−1X[(4∆Ω, 2α2Ω, |ξ|2), α2Ω2].

Similarly, we could determine the connection on the extended manifold; however, the result

is considerably more complicated and is not very illuminating. Using the above components
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together with the push-forward D∗, we obtain the horizontal projection of the physical tangent

space on the identifiable subspace; a direct computation shows that it coincides with the above

four-dimensional subspace, with components in the above chosen symplectic basis given by

P (Ḋ∆) =
Ω

αγ
3
2


−4α2∆

−2α4


⊕



√

2α2Ω

−2
√

2∆Ω




P (ḊΩ) =
1

αγ
3
2


−α

2 (γ − 8∆2)

4α4∆


⊕


 −2

√
2α2∆Ω

−
√

2Ω (α4 + 2Ω2)


 ,

P (Ḋα) =
Ω√
γ


1

0


⊕


0

0


 ,

P (Ḋθ) =
αΩ

γ
3
2


−4α2∆

γ − 2α4


⊕



√

2α2Ω

−2
√

2∆Ω


 .

4. The Fisher information of the physical parameters

We can now easily find the QFI rate for any tangent vector written in the symplectic basis,

by simply computing its norm. This gives

f∆ = 4
2Ω2|ξ|2 (2α4 + Ω2)

α2γ3
fΩ = 4

α12 + α8 (8∆2 + 6Ω2) + 4α4 (4∆4 − 2∆2Ω2 + 3Ω4) + 8Ω6

α2γ3

fα = 4
Ω2

γ
fθ = 4

α2Ω2 (−2Ω2 (α4 − 12∆2) + |ξ|4 + 4Ω4)

γ3
.

Note that the reason why these expressions are rather complicated is partially due to the fact

that the physical directions do not lie in the identifiable subspace, but need to be projected

there.

5. The canonical coordinates of the physical parameters

This can be read off from the components of the above column vectors; for instance, at

∆ = 0 (resonance) we have

W (P (Ḋ∆)) = exp−iαΩ

γ
3
2

(
2α2Q1 +

√
2ΩP2

)
, W (P (ḊΩ)) = exp

1

αγ
3
2

(
α2γP1 −

√
2Ω
(
α4 + 2Ω2

)
Q2

)

W (P (Ḋα)) = exp−i Ω√
γ
P1, W (P (Ḋθ)) = exp i

αΩ

γ
3
2

(
(γ − 2α4)Q1 −

√
2α2ΩP2

)
,

that is, change in each physical parameter is generated by a linear combination of at most two

canonical quadratures.

Using the connection form, one could further investigate the global structure of the infor-

mation geometry, in terms of the curvature, geodesics and parallel transport. This would be
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relevant for some of the future lines of research mentioned in the introduction, but beyond

the scope of this paper. We only note that for instance the curvature two-form can easily

be determined by straightforward although somewhat tedious computer algebra; this shows in

particular that the connection is not flat, i.e. the horizontal bundle is not integrable.

VII. LOCAL ASYMPTOTIC NORMALITY IN THE MULTIPARAMETER

SETTING

In subsection V A we showed that the quantum Fisher information of the output state

increases linearly in time as F θ(t) ≈ tf θ, and we identified the QFI rate f θ as the real part

of the Markov covariance matrix of tangent vectors corresponding to changes in the parameter

θ, cf. equations (22), (26). In this section we extend the statistical analysis by proving that

the output state is asymptotically Gaussian in the limit of large times, in a sense which will

be defined precisely below. In effect this means that the output states for parameters in a

local neighbourhood of a given dynamical parameter D0, can be approximated by a limit model

which consists of a family of pure Gaussian states of the CCR algebra CCR(T idD0
, σD0) defined

above, with mean determined by local changes in the unknown parameter, and covariance given

by the QFI rate. Before stating the asymptotic normality result, we briefly review the general

statistical concepts involved in its formulation. For more details about the general theory of

quantum statistical models we refer to29,31.

A. Convergence of quantum statistical models

A quantum statistical model over the parameter space Θ ⊂ Rk is a family Q := {ρθ : θ ∈ Θ}
of quantum states on a fixed Hilbert space H, which are indexed by an unknown parameter θ ∈
Θ. We are interested in characterising the asymptotic behaviour of an ordered set of statistical

models, in particular the convergence to a limit model. Such problems arise in quantum state

estimation where the statistical models consist of ensembles of identically prepared systems, and

the order parameter is the size of the ensemble40, or in the estimation of dynamical parameters

(system identification) where time plays the role of “sample size”. The latter case is the topic

of this paper.

We start by noting that the space of statistical models is equipped with a natural notion of

equivalence. Two models Q1 := {ρθ1 : θ ∈ Θ} and Q2 := {ρθ2 : θ ∈ Θ} (possibly on different

Hilbert spaces) are statistically equivalent if there exist quantum channels T, S between the
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appropriate state spaces such that

T (ρθ1) = ρθ2, S(ρθ2) = ρθ1 (37)

for all θ ∈ Θ. A consequence of the equivalence is that the probability distribution of any

measurement M on Q1 can be reproduced by a measurement on Q2 obtained by applying S

followed by M , and vice versa. Therefore the two models have exactly the same optimal risks

(figures of merit) for any statistical problem concerning the parameter θ. In the special case

when Q1 and Q2 are pure state models, it can be shown15 that the models are equivalent if

and only if there exist representative vectors (i.e. ρθ1 = |ψθ1〉〈ψθ1|, ρθ2 = |ψθ2〉〈ψθ2|) such that the

overlaps of all pairs of vectors in the two models coincide

〈ψθ1|ψθ
′

1 〉 = 〈ψθ2|ψθ
′

2 〉, θ, θ′ ∈ Θ.

This shows that the intrinsic statistical properties of the model are encoded in the overlaps, up

to an ambiguity in choosing the phases.

More generally, the theory of quantum sufficiency48 deals with the situation when the models

are related by the channel transformation (37) only in one direction, so that one of the models

is more informative that the other. However, such a relationship is still rather restrictive; in

asymptotic statistics one is often interested in approximating a given model by a “simpler”

one which is “close” to it in a statistical sense. The above discussion suggests two ways of

formalising this idea. The first one is to define a notion of distance between models29, inspired

by the classical theory developed by Le Cam41

Definition 3. Let Q1 and Q2 be two quantum statistical models over Θ, defined as above. The

deficiencies of one model with respect to the other are defined as

δ(Q1,Q2) = inf
T

sup
θ∈Θ
‖T (ρθ1)− ρθ2‖1, δ(Q2,Q1) = inf

S
sup
θ∈Θ
‖S(ρθ2)− ρθ1‖1,

where the infima are taken over all quantum channels between the appropriated spaces, and the

distance is given by the trace-norm ‖τ‖1 := Tr(|τ |). The Le Cam distance between the models

Q1 and Q2 is defined as ∆(Q1,Q2) = max(δ(Q1,Q2), δ(Q2,Q1)).

A set of model Qt := {ρθt : θ ∈ Θ} indexed by t in N or R converges strongly (or in the

sense of Le Cam) to a limit model Q := {ρθ : θ ∈ Θ} if ∆(Q,Qt)→ 0 as t→∞.

It can be shown that two models are equivalent if and only if the Le Cam distance between

them is zero. More generally, the Le Cam distance provides an upper bound to the the dif-

ference between optimal risks of statistical decision problems with bounded loss functions29.

Furthermore, the convergence to a simpler limit model can be used to identify asymptotically
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optimal measurement procedures for a given statistical decision problem, e.g. state estimation.

This can be done by mapping the state ρθt through the channel Tt onto the space of the limit

model, followed by applying the optimal measurement for the limit model. An instance of this

the phenomenon is local asymptotic normality for state estimation40 which we illustrate below

in the simplified setup of pure states. For this we formulate the second notion of convergence

of models, based on the fidelity of the state vectors.

Definition 4 (weak convergence of pure states statistical models). Let Qt := {ρθt : θ ∈
Θ} be a set of pure states quantum statistical models on Hilbert spaces Ht over parameter space

Θ ⊂ Rk, where the index t is chosen from N or R. The family Qt is said to converge weakly

to a model Q := {ρθ : θ ∈ Θ} on a Hilbert space H, if there exists a choice of representative

vectors (i.e. ρθt = |ψθt 〉〈ψθt |, ρθt = |ψθt 〉〈ψθt |) such that

lim
t→∞
〈ψθt |ψθ

′

t 〉 = 〈ψθ|ψθ′〉, θ, θ′ ∈ Θ.

Given that each statistical model is completely determined by the overlaps of pairs of vec-

tors with different parameters, the definition captures the intuitive idea that two models are

“close” to each other if they have similar overlaps. As a simple multidimensional example we

consider the weak convergence of ensembles of identically prepared qubits to coherent states of

a one mode continuous variables system, which is closely related to the theory of coherent spin

states49. Let

|ψun〉 =

[
exp

(
i√
2n

(uyσx − uxσy)
)
|0〉
]⊗n

, u = (ux, uy) ∈ R2

be a 2-dimensional family of i.i.d. qubit states obtained by rotating the basis vector |0〉 with

generators given by the Pauli matrices σx, σy. Since the ensemble has size n, the statistical

uncertainty in estimating rotation parameters is of the order of n−1/2. It is then meaningful

to restrict the attention to a shrinking region in the parameter space, and write the rotation

parameters as u/
√
n30. Due to the rescaling, the QFI of the “local parameter” u is a constant

2 × 2 matrix f = 212 which plays a similar role to the QFI rate per unit of time defined in

equations (22),(26). We will now show that the sequence of local models Qn = {|ψun〉 : u ∈ R2}
converges weakly to the quantum Gaussian model Q = {|u〉 : u ∈ R2}, where |u〉 denotes the

coherent state of a one mode continuous variables system with mean values for the canonical

variables given by 〈Q〉 = ux, 〈P 〉 = uy. Indeed, since 〈0|σx|0〉 = 〈0|σy|0〉 = 0, by expanding in

powers of n−1/2 we obtain

lim
n→∞
〈ψun|ψvn〉 = lim

n→∞

(
1− 1

4n
〈0|(uyσx − uxσy)2|0〉+ o(n−1)

)n

= exp(‖u− v‖2/4) = 〈u|v〉, u, v ∈ R2.
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In particular, the limit model has QFI equal to f = 212 which is the inverse of the covariance of

the vacuum state. Furthermore, one can show that the convergence holds also in the stronger

sense of Le Cam, so that optimal estimation procedures for the limit Gaussian model can

be “pulled back” to asymptotically optimal measurements for the n qubits ensemble. When

the figure of merit (or risk) is the mean square error E(‖û − u‖2), the optimal measurement

for estimating u in the limit model is the heterodyne measurement; this can be seen as a

noisy joint measurement of the canonical variables Q and P and it outcome û is an unbiased

estimator of u which has Gaussian distribution N(u,1). The variance of û can be written as

V = f−1 + 1
2
1 where the first term comes from the quantum covariance while the second is

the minimum amount of “noise” required for the simultaneous estimation of the means of the

non-commuting observables Q and P . Moreover, the estimator is normally distributed, which

allows one to devise confidence regions for large n. By a Central Limit argument one can show

that Q and P are the are the appropriately rescaled limits of the total spin observables Lx

and Ly so that the optimal measurement is essentially a joint measurement of collective spin

observables.

As we will see below, the key features of the i.i.d. qubit model are also present in the more

complicated Markovian output setup, which we now proceed to consider.

B. Multiparameter LAN for quantum Markov processes

We start by considering a completely general model in which all identifiable parameters are

unknown, and show how this model can be approximated locally by a Gaussian model on the

CCR algebra of Definition 2. This result can then be applied to the situation where some prior

information is available and we deal with a lower dimensional model.

1. Estimation of identifiable parameters.

We will consider that the physical dynamics is governed by an unknown dynamical parameter

D; however, since the latter cannot be completely identified from the stationary output state,

we will focus on the estimation of all identifiable parameters given by the equivalence classes

[D] ∈ P . Similarly to the i.i.d. setup described in section VII A, we will be interested in

the properties of the quantum output statistical model in the limit of large times. It is then

meaningful to consider parameters [D] lying in a shrinking neighbourhood of a fixed point

[D0] in P , whose size is of the order of the statistical uncertainty t−1/2. We will formulate

two convergence results: the first one concerns the weak convergence of the system-output
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state, while the second deals with the strong convergence of the output state. Since the latter

depends only on the equivalence class [D], the strong convergence can be formulated solely in

terms of the parameter space P = Derg/G. On the other hand, since the system-output state is

not invariant over equivalence classes, the weak convergence depends on the specific choice of

dynamical parameters for each equivalence class. Geometrically, this choice is determined by a

section of the principal bundle, i.e. a smooth map s : P → Derg such that π ◦ s([D]) = [D] for

[D] in a local neighbourhood of [D0]. We will assume that s is “horisontal” in the sense that the

tangent space to s(P) at D0 is the horisontal space T idD0
. The intuition here is that the changes

along equivalence classes of dynamical parameters are not observable in the output state, while

those along tangent vectors in T idD0
describe all the identifiable parameters. Although the theory

can be developed in a coordinate-free way, for concreteness we consider a local coordinates chart

in a neighbourhood of [D0] defined by

C : P → O ⊂ Rδid

where O is a open ball centred at the origin, and C([D0]) = 0. For simplicity we denote the

parameter with coordinate u by [D]u and the corresponding “lifted” dynamical parameter by

Du := s([D]u). The tangent vectors

[Ḋ]a :=
∂[D]u
∂ua

∣∣∣∣
u=0

, Ḋa :=
∂Du

∂ua

∣∣∣∣
u=0

a = 1, . . . , δid

form a basis of the space T[D0], and respectively T idD0
. With these notations we define two local

statistical models corresponding to the system-output state and respectively the output state

at time t.

Definition 5. Let s, C, [D]u ∈ P ,Du ∈ Derg be define as above with coordinate u ∈ O ⊂ Rδid

in a neighbourhood of the origin. The quantum statistical models of system-output state and

respectively the stationary output state at time t are defined by

Qt :=
{∣∣∣Ψs+o

u/
√
t
(t)
〉

: u ∈ O ⊂ Rδid
}
, Q̃t :=

{
ρout
u/
√
t
(t) : u ∈ O ⊂ Rδid

}
.

with dynamics generated by Du/
√
t. Furthermore, we define the (pure states) Gaussian model

G :=
{
ρu := |u〉〈u| : u ∈ O ⊂ Rδid

}

where |u〉 = W (
∑

a uaḊa)|Ω〉 is the coherent state of the CCR algebra CCR(T idD0
, σD0), cf.

Definition 2.

The overlaps of the coherent states |u〉 can be computed from Definition 2 and are given by

〈u|u′〉 = exp

(
−1

8
(u− u′)TfD0(u− u′) + iuTσD0u′

)
. (38)
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From this one can deduce that the Gaussian model G has quantum Fisher information fD0 ,

equal to the QFI rate of the system-output model Qt. The following theorem explains this

connection by showing that the system-output and respectively output local models converge

the to the Gaussian limit model. From the practical viewpoint, this means that the linear QFI

scaling with rate fD0 is asymptotically achievable, and moreover, the optimal measurement has

asymptotically Gaussian distribution, cf.40 for a detailed discussion of the interpretation of local

asymptotic normality.

Theorem 2 (local asymptotic normality). Let Qt, Q̃t,G be the system-output, output, and

Gaussian models introduced in Definition 5. The following statements hold.

1) The pure states models Qt converges weakly to the Gaussian model G. More precisely,

there exists a particular choice of the (unphysical) phase angle φ(u) of the coherent state |u〉
such that

lim
t→∞

〈
Ψs+o
u/
√
t
(t)
∣∣∣Ψs+o

u′/
√
t
(t)
〉

= eiφ(u′)−iφ(u)〈u|u′〉, u, u′ ∈ O ⊂ Rδid . (39)

2) The mixed states models Q̃t converge strongly to the the Gaussian model G, i.e. ∆(Q̃t,G)→
0. More precisely, there exist quantum channels Tt, St such that

lim
t→∞

sup
u∈O

∥∥∥Tt
(
ρout
u/
√
t
(t)
)
− ρu

∥∥∥
1

= 0

lim
t→∞

sup
u∈O

∥∥∥St (ρu)− ρout
u/
√
t
(t)
∥∥∥

1
= 0.

In the reminder of this section we give the main idea of the proof and discuss the physical

interpretation. The technical details can be found in the Appendix. Recall that the system-

output state is given by |Ψs+o
D (t)〉 = UD(t)|ϕ〉 ⊗ |Ω〉 where UD(t) is the unitary defined by the

QSDE (4). By using Ito calculus it can be shown13 that the overlaps of system-output states for

different dynamical parameters can be expressed in terms of a contractive (non-CP) semigroup

〈
Ψs+o

D (t)
∣∣Ψs+o

D′ (t)
〉

= 〈ϕ| etWD,D′ (1) |ϕ〉 .

where WD,D′ is the “off-diagonal” semigroup generator

WD,D′(X) = i(HX−XH ′)+
∑

i

[
L∗iXL

′
i −

1

2
(L∗iLiX +XL′∗i L

′
i))

]
, D = (H,L), D′ = (H ′,L′)

which coincides with the usual Markov generator WD for D = D′. When choosing D = Du/
√
t

and D′ = Du′/
√
t the generator can be expanded as

WD,D′ = WD0 +
1√
t
L1[u, u′] +

1

2t
L2[u, u′] +O(t3/2).

Using a version of the Trotter-Kato second order perturbation Theorem for semigroups (cf.

Theorem 2.2 in13) one can show that (39) holds with an explicit choice of the phase angle φ(u)
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as a quadratic form in u. The details of the calculations can be found in the Appendix. Note

that since the phase eiφ(u) is unphysical, it could have been incorporated in the definition of

the coherent state |u〉, or in that of the system-output state |Ψs+o
u/
√
t
(t)〉.

The second part of the Theorem can be proven by following the lines of an analogous discrete-

time result, cf. Theorem 7 in31. The main ideas are as follows. Let ρDss =
∑

m Λm|em〉〈em| be the

spectral decomposition of the stationary state for some dynamical parameter D. The stationary

output state is given by

ρout
D (t) =

∑

m,m′

Λm|ψmm′(t)〉〈ψmm′(t)|,

where, up to normalisation, |ψmm′(t)〉 are the conditional output states obtained by initialising

the system in state |em〉 and projecting on state |em′〉 at time t, cf. proof of Lemma 3 in

Appendix. For large times, the overlaps of the different pure components |ψmm′(t)〉 vanish

exponential fast; more generally, if D = Du/
√
t and D′ = Du′/

√
t are two dynamical parameters

in the local neighbourhood of D0 (i.e. u, u′ ∈ O) then all the overlaps of components with

different indices decay exponentially uniformly in u, u′. This can be shown by expressing the

overlaps in terms of the deformed generator WD,D′

〈ψmm′(t)|ψnn′(t)〉 =
〈
em′|etWD,D′ (|en〉〈em|)|en′

〉

and following the steps of the proof of Theorem 3 in31, in particular the argument following

equation (35). This implies that the components can be distinguished with vanishing error

probability, without the knowledge of the local parameter u. Each pure component satisfies

the weak version of the local asymptotic normality, which can be upgraded to the strong

version as in Theorem 7 of31, which in turn employs a general result described in Lemma 5

of31. Combining this with the fact that the pure components can be distinguished allows to

construct the channels Tt, St as in31.

2. Estimation for specific model of dynamical parameters

In the previous subsection we considered the problem of estimating all identifiable param-

eters, and showed how this becomes a quantum Gaussian estimation problem. Here, we show

how this general result can be used for estimating an unknown parameter of the dynamics.

Suppose that the the dynamical parameter D is known to depend on θ ∈ Rm as described in

section V A, so that D = Dθ. Let θ0 be a fixed but arbitrary parameter value and let

Ḋa :=

(
∂H

∂θa

∣∣∣∣
θ0

,
∂L1

∂θa

∣∣∣∣
θ0

, . . . ,
∂Lk

∂θa

∣∣∣∣
θ0

)
= (Ḣa, L̇

1
a, . . . , L̇

k
a) ∈ TDθ0

be the tangent vectors associated to the different directions in the parameter space Rm.
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The stationary output’s QFI rate matrix f at a given point θ0 can be computed using

the explicit formula (26), and we assume that θ is identifiable so that f is a strictly positive

matrix. This condition can be verified as follows. Let T̃Dθ0 be the tangent space at Dθ0 to the

parametrised submanifold consisting of the points Dθ, and recall that T nonid
Dθ0

is the space of

directions corresponding to unidentifiable parameters. If the intersection T̃Dθ0 ∩T
nonid
Dθ0

is trivial

then the Fisher information matrix f has no zero eigenvalue and therefore θ is identifiable

locally around θ0. We consider a local parametrisation around θ0 given by θ = θ0 + h/
√
t,

with local parameter h ∈ Rm. Since the stationary state depends only on the equivalence class

[D], the statistical model can be projected onto the base space P giving rise to a local model

[D]h/
√
t, with h ∈ O′ ⊂ Rm, which can be seen as sub-model of the ‘full’ model considered in

the previous subsection. In particular, the asymptotic normality Theorem 2 applies directly to

the sub-model. However, in general it may happen that the “full” Gaussian limit model may

be “too large”, and one can use a restricted model defined as follows. Recall that T idDθ0 is a

Hilbert space with inner product (33), which defines the CCR algebra CCR(T idDθ0 , σ
Dθ0 ) and

the Gaussian state |0〉. Let P (Ḋa) be the projection of the tangent vector Ḋa onto T idDθ0 , and

define T ′ to be the (complex) subspace spanned by these projections, with a = 1, . . . ,m. The

subspace defines a CCR subalgebra CCR(T ′, σDθ0 ), and the restriction of the Fock state |0〉 to

this subalgebra is also a Fock state which we denote by the same symbol.

As a concrete example, consider the driven two-level model of Section VI B, where the total

identifiable subspace is 8-dimensional, while the subspace spanned by the projections of the

physical tangent vectors is four-dimensional, associated with the CCR-algebra of four canonical

quadratures.

We now obtain the following asymptotic normality result for the model Dθ in the neighbour-

hood of θ0.

Corollary 1. Let

Q′t :=
{
ρout
h/
√
t
(t) : h ∈ O′ ⊂ Rm

}
, G ′ := {ρ′h := |h〉〈h| : h ∈ O′ ⊂ Rm}

denote the local quantum statistical model of the output state associated to the dynamical param-

eter Dθ0+h/
√
t, and respectively the Gaussian model associated to the algebra CCR(T ′, σDθ0 ), with

|h〉 := W (h)|0〉. Then Q′t converge strongly to the the Gaussian model G ′, i.e. ∆(Q′t,G ′) → 0.

More precisely, there exist quantum channels T ′t , S
′
t such that

lim
t→∞

sup
h∈O′

∥∥∥T ′t
(
ρout
h/
√
t
(t)
)
− ρ′h

∥∥∥
1

= 0

lim
t→∞

sup
h∈O′

∥∥∥S ′t (ρ′h)− ρout
h/
√
t
(t)
∥∥∥

1
= 0.
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VIII. APPENDIX: PROOFS

A. Proof Theorem 1

The proof of Theorem 1 is inspired by a related argument from5, and requires some auxiliary

lemmas.

Lemma 2. Let Dl := (Hl, L
1
l , . . . , L

k
l ), l = 1, 2 be two dynamical parameters with system spaces

Hl and assume that both dynamics are ergodic. We define the maps

Wll′ :B(Hl′ ,Hl)→ B(Hl′ ,Hl), Wll′(X) = −iXHl′,eff + iH∗l,effX +
k∑

i=1

Li∗l XL
i
l′ .

for l, l′ = 1, 2. Then the following conditions are equivalent:

(i) W12 has a purely imaginary eigenvalue;

(ii) W21 has an purely imaginary eigenvalue;

(iii) there exists a unitary operator U : H2 → H1, and r ∈ R, such that Li2 = U∗Li1U for all

i = 1, . . . , k, and H2 = U∗H1U − r1.

If any of these conditions hold, then W12(U) = irU and W21(U∗) = −irU∗.

Proof. Conditions (i) and (ii) are clearly equivalent: Wll′(F ) = irF with some r ∈ R and

F ∈ B(Hl′ ,Hl), then Wl′l(F
∗) = −irF ∗. Assuming (iii) we have

W12(U) = −iUH2,eff + iH∗1,effU +
k∑

i=1

Li∗1 UL
i
2 = UW22(1) + irU = irU,

i.e. (i) holds, with ir the corresponding eigenvalue. Thus, the only nontrivial implication is

(i) =⇒ (iii).

Let us define the families of isometries Vl(t) : H → Hl⊗F such that Vl(t)|ϕ〉 = Ul(t)|ϕ〉⊗Ω〉,
with Ul(t) the unitary generated by the dynamical parameter Dl, cf. equation (4). Then

Tll′,t(X) := Vl(t)
∗(X ⊗ 1F)Vl′(t) = eitWll′ (X). Assume now (i), and let r and F be such

that W12(F ) = irF . Then T12,t(F ) = eitrF , and since W21(F ∗) = −irF ∗, we also have
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T21,t(F
∗) = e−irtF ∗. For each t we have V1(t)V1(t)∗ ≤ 1H1⊗F , so

T22,t(F
∗F ) = V ∗2 (t)(F ∗ ⊗ 1F)(F ⊗ 1F)V2(t)

≥ V ∗2 (t)(F ∗ ⊗ 1F)V1(t)V1(t)∗(F ⊗ 1F)V2(t) = T21,t(F
∗)T12,t(F ) = F ∗F.

Let P be the projection onto the eigenspace of F ∗F corresponding to its largest eigenvalue

‖F ∗F‖. Now limt→∞ T22,t(X) = tr[ρss,2X]1H2 by ergodicity, so

tr[ρss,2F
∗F ] = lim

t→∞
tr[P ]−1tr[PT22,t(F

∗F )] ≥ tr[P ]−1tr[PF ∗F ] = ‖F ∗F‖.

This implies that tr[ρss,2F
∗F ] = ‖F ∗F‖, i.e. ρss,2 is supported in the projection P . But ρss,2 has

full rank inH2, so P = 1H2 , and, consequently, F ∗F = ‖F ∗F‖1H2 . By proceeding in exactly the

same way starting from T11,t, we show that FF ∗ = ‖FF ∗‖1H1 . Denote α := ‖FF ∗‖ = ‖F ∗F‖,
and U := α−

1
2F . Then U : H2 → H1 is a unitary operator between the two Hilbert spaces and

in particular, dimH1 = dimH2. Moreover, we now have

ir1H2 = U∗W12(U) = −i(H2 − U∗H1U)− 1

2

∑

i

(Li∗2 L
i
2 + U∗Li∗1 L

i
1U) +

∑

i

(U∗Li1U)∗Li2; (40)

taking the real part of the trace of this equation gives

Re
∑

i

tr[(U∗Li1U)∗L2,i] =
1

2

∑

i

tr[Li∗2 L
i
2 + U∗Li∗1 L

i
1U ] (41)

which implies that the (generally valid) inequalities

Re
∑

i

tr[(U∗Li1U)∗Li2] ≤
∣∣∣∣∣
∑

i

tr[(U∗Li1U)∗Li2]

∣∣∣∣∣ ≤
√∑

i

tr[Li∗2 L
i
2]
∑

i

tr[(U∗Li1U)∗(U∗Li1U)]

≤ 1

2

∑

i

tr[Li∗2 L
i
2 + U∗Li∗1 L

i
1U ]

are in fact equalities. In particular,

Im
∑

i

tr[(U∗Li1U)∗L2,i] = 0. (42)

Moreover, since the second inequality is Cauchy-Schwartz for the scalar product
∑

i tr[A
∗
iBi] of

k-tuples (A1, . . . , Ak) of Hilbert-Schmidt operators, it follows that there exists a scalar c ∈ C

such that U∗Li1U = cLi2 for all i. Putting this into (42) we see that c ∈ R, and from (41) it

follows that c = 1. Finally, from (40) we then get r = −H2 + U∗H1U , which proves (iii).

For reader’s convenience we formulate the following simple lemma using the notations of the

input-output setting, but the statement holds in a general context.

42



Lemma 3. Let F , and Hl, l = 1, 2, be Hilbert spaces. For each t ≥ 0 let

Vl(t) : Hl → Hl ⊗F , l = 1, 2,

be an isometry, and define the maps

Tll′,t(X) := Vl(t)
∗(X ⊗ 1F)Vl′(t), X ∈ B(Hl′ ,Hl).

Suppose that limt→∞ Tll′,t(·) = δll′tr[ρss,l(·)]1Hl holds for some states ρss,l, and define ρout
l (t) :=

trHl [Vl(t)ρss,lVl(t)
∗]. Then limt→∞ tr[ρout

1 (t)2] and limt→∞ tr[ρout
2 (t)2] exist and are strictly posi-

tive, while

lim
t→∞

tr[ρout
1 (t)ρout

2 (t)] = 0. (43)

Proof. We write ρss,l =
∑

m Λl,m|el,m〉〈el,m| where Λl,m ≥ 0, and {el,m}m is an orthonormal

basis of Hl. Then

ρout
l (t) =

∑

m

Λl,mtrHl [|Vl(t)el,m〉〈Vl(t)el,m|] =
∑

m,m′

Λl,m|ψl,mm′(t)〉〈ψl,mm′(t)|,

where ψl,mm′(t) ∈ F is the unique vector satisfying 〈χ|ψl,mm′(t)〉 = 〈el,m ⊗ χ|Vl(t)el,m′〉 for all

χ ∈ F . Now 〈ψl,mn(t)|ψl′,m′n′(t)〉 = 〈el,n|Tll′,t(|el,m〉〈el′m′|)|el′,n′〉 so we can write

tr[ρout
l (t)ρout

l′ (t)] =
∑

n,m

∑

n′,m′

Λl,nΛl′,n′ |〈ψl,mn(t)|ψl′,mn(t)〉|2

=
∑

n,m

∑

n′,m′

Λl,nΛl′,n′ |〈el,n|Tll′,t(|el,m〉〈el′m′|)|el′,n′〉|2 → δll′
∑

n,n′

Λ2
l,nΛ2

l,n′ .

We can now proceed with the proof of Theorem 1. The ‘if’ part is straightforward. Assume

now that parameter sets (H l, {Lli}ki=1), l = 1, 2 are equivalent, and define Tll′ as in Lemma 2.

We consider the direct sum isometry

Vtot(t) := V1(t)⊕ V2(t) : H1 ⊕H2 → H1 ⊗F ⊕H2 ⊗F = (H1 ⊕H2)⊗F .

We identify the elements X ∈ B(H1 ⊕H2) in the usual way with block matrices

X =


X11 X12

X21 X22


 ,

where Xll′ ∈ B(Hl′ ,Hl), the set of linear operators Hl′ → Hl. This identifies B(Hl,Hl′) as

a subspace B(H1 ⊕ H2), and each of these four subspaces is invariant under the channels Tt

associated with Vtot(t). Explicitly, we have

Tt(X) =


T11,t(X11) T12,t(X12)

T21,t(X21) T22,t(X22)


 . (44)
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In particular, any eigenvalue of Tll′,t is also an eigenvalue of Tt, because the subspaces are

invariant. Since each Tt is completely positive and unital by construction, all eigenvalues of

Tll′,t have modulus at most one, hence the eigenvalues of W12 have real part ≤ 0. If all of

these are strictly negative, then we have limt→∞ T12(t) = limt→∞ e
tW12 = 0, which according to

Lemma 3 contradicts the assumption that the output states are equal. Hence W12 must have

a purely imaginary eigenvalue, so Lemma 2 concludes the proof.

B. Proof of Proposition 1

We fix a dynamical parameter D. Clearly we may assume CD(X0) = X0 (that is, X0 ∈ B0)

without loss of generality. The key ingredient is the following lemma which we prove first. In

order to avoid cluttering the notation, we do not indicate D-dependence explicitly.

Lemma 4. For any tuple of operators X := (X0, X1, . . . , Xk) ∈ B0 ⊗M(Cd)k, and all s ≥ 0,

the following equality between maps on M(Cd) holds

√
s 〈Fs(X)Ω |js(·)Ω〉 =

∫ s

0

Tt ◦ ΦX ◦ Ts−t(·) dt, (45)

where ΦX : M(Cd)→M(Cd) is the map given by

ΦX(Y ) = X0∗Y +
k∑

i=1

X i∗[Y, Li].

Proof. We let Fs denote the left hand side of (45). By applying the quantum Ito formula (3) to

the product of two adapted processes inside the conditional expectation, and eliminating the

terms involving the annihilation processes acting on the vacuum, we get

dFs(B) = 〈Ω|
(

k∑

i=1

js(X
i∗)dAi(s) + js(X

0∗)ds

)
djs(B) |Ω〉+ 〈Ω|js(X0∗)js(B)|Ω〉ds

+ 〈Ω|
(

k∑

i=1

js(X
i∗)dAi(s)djs(B)

)
|Ω〉

for all system operators B. Using now the Langevin equation (6), together with the Ito mul-

tiplication rules, and again eliminating the contributions from the annihilation processes, we

get

Fs(B) =

∫ s

0

Ft(W(B)) dt+ 〈Ω|
∫ s

0

(
jt(X

0∗)jt(B) +
k∑

i=1

jt(X
i∗)jt([B,L

i])

)
|Ω〉dt

=

∫ s

0

(Ft ◦W(B) + Tt ◦ ΦX(B)) dt,

where we have also used (7). Hence Fs satisfies the (ordinary) differential equation

dFt
dt

= Ft ◦W + Tt ◦ ΦX,

44



with initial condition F0 = 0. We can easily solve this equation: without the inhomogeneous

part Tt ◦ ΦX, the solution would be simply Tt = etW; hence the actual solution is obtained by

concatenating Tt ◦ ΦX with Ts−t, and integrating. This gives the claimed result.

Note that the covariance of the fluctuation operators is sesquilinear with respect to the

operator coefficients X and Y. We show that the limit exists by computing it explicitly using

the Ito calculus. The differential of the product Fs(X)∗Fs(Y) is given by the quantum Ito

formula (3):

d(Fs(X)∗Fs(Y)) = Fs(X)∗ · dFs(Y) + dFs(X)∗ · Fs(Y) + dFs(X)∗ · dFs(Y) (46)

For the last term, the Ito rule gives dFs(X)∗ ·dFs(Y) = 1
t

∑k
i=1 js(X

i∗Y i)ds, and hence by using

(7) and (8), we get

∫ t

0

〈ϕ⊗ Ω|dFs(X)∗ · dFs(Y)|ϕ⊗ Ω〉 =
1

t

∫ t

0

〈
ϕ

∣∣∣∣∣Ts
(

k∑

i=1

X i∗Y i

)∣∣∣∣∣ϕ
〉
ds

t→∞−→ tr[ρss

k∑

i=1

X i∗Y i].

The expectation of the first term in (46) can be computed by applying Lemma 4 with ΦX :=

iX0∗(·) +
∑

iX
i∗[(·), Li]; we get

〈ϕ⊗ Ω|
∫ t

0

Fs(X)∗ · dFs(Y)|ϕ⊗ Ω〉 =
1√
t
〈ϕ⊗ Ω|

∫ t

0

Fs(X)∗js(−iY 0) ds|ϕ⊗ Ω〉

=
1

t
〈ϕ|
∫ t

0

ds

∫ s

0

dr Tr ◦ Φ ◦ Ts−r(−iY 0) |ϕ〉

=

∫ t

0

ds 〈ϕ|1
t

(∫ t−s

0

dr Tr

)
◦ Φ ◦ Ts(−iY 0) |ϕ〉

t→∞−→ −tr[ρssΦ ◦W−1(−iY 0)],

where we have also used the limit relations (8) and (10). The second term in (46) is obtained

by taking the adjoint of the first term with the roles of X and Y interchanged; this gives

(X,Y)D = tr

[
ρDss

(∑

i

X i∗Y i + ΦX ◦W−1(iY 0) + (ΦY ◦W−1(iY 0))∗

)]

= tr
[
ρDss

( k∑

i=1

X i∗Y i −X0∗W−1(Y 0)−W−1(X0∗)Y 0 − i
k∑

i=1

X i∗[Li,W−1(Y 0)]

+ i
k∑

i=1

[W−1(X0∗), Li∗]Y i
)]

We then apply the identity

W(X∗Y )−X∗W(Y )−W(X∗)Y =
∑

i

[Li, X]∗[Li, Y ],
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which holds for arbitrary matrices X, Y , to the case where X = W−1(X0) and Y = W−1(Y 0).

Using the fact that tr[ρDssW(X∗Y )] = 0, we obtain the following formula for the inner product

(X,Y)D =
k∑

i=1

tr
[
ρDss
(
X i − i[Li,W−1(X0)]

)∗ (
X i − i[Li,W−1(X0)]

)]
(47)

This proves the proposition.

C. Proof of Theorem 2

Since Ḋa ∈ T idD0
we have ED0(Ḋa) = 0 and using this we find that the first order term is given

by

L1[u, u′](X) :=
∑

a,i

uaL̇
i∗
a [X,Li]−

∑

a,i

u′a[X,L
i∗]L̇ia. (48)

The second order term is given by

L2[u, u′](X) =
∑

a,a′

uaua′

((
iḦaa′ −

1

2

∑

i

(L̈i∗aa′L
i + Li∗L̈iaa′ + 2L̇i∗a L̇

i
a′)

)
X +

∑

i

L̈i∗aa′XL
i

)

+
∑

a,a′

u′au
′
a′

(
X

(
−iḦaa′ −

1

2

∑

i

(L̈i∗aa′L
i + Li∗L̈iaa′ + 2L̇i∗a L̇

i
a′)

)
+
∑

i

Li∗XL̈iaa′

)

+ 2
∑

aa′

uau
′
a′

∑

i

L̇i∗a XL̇
i
a′ .

Using a version of Trotter-Kato theorem (cf. Theorem 2.2 in13), we obtain the limit

lim
t→∞

e
tWD

u/
√
t
,D
u′/
√
t (1) = ef(u,u′)

1,

where

f(u, u′) = tr

[
ρD0
ss

(
1

2
L2[u, u′](1)− L1[u, u′] ◦W−1

D0
◦ L1[u, u′](1)

)]
.

Now, from equation (48) we find L1[u, u′](1) = 0 and

L2[u, u′](1) =
∑

aa′

uaua′

(
iḦaa′ +

1

2

∑

i

(L̈i∗aa′L
i − Li∗L̈iaa′ − 2L̇i∗a L̇

i
a′)

)

+
∑

aa′

u′au
′
a′

(
−iḦaa′ +

1

2

∑

i

(−L̈i∗aa′Li + Li∗L̈iaa′ − 2L̇i∗a L̇
i
a′)

)

−
∑

aa′

(ua − u′a)(ua′ − u′a′)
∑

i

L̇i∗a L̇
i
a′ + 2iIm

∑

aa′

uau
′
a′

∑

i

L̇i∗a L̇
i
a′

+
∑

aa′

(uaua′ + u′au
′
a′)
∑

i

L̇i∗a L̇
i
a′

=
∑

aa′

[
− (ua − u′a)(ua′ − u′a′)L̇i∗a L̇ia′ + 2iuau

′
a′ImL̇

i∗
a L̇

i
a′

+ i(uaua′ − u′au′a′)
(
Ḧaa′ + Im

∑

i

L̈i∗aa′L
i
)]
.
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Therefore we have

f(u, u′) =
1

2
tr
(
ρD0
ss L2[u, u′](1)

)
= −1

8
(u− u′)TfD0(u− u′) + iuTσD0u′ + i(uTSu− u′TSu′).

Above, fD0 is the quantum Fisher information matrix at D0 whose entries have the simple form

due to the fact that the tangent vectors Ḋa belong to the space T idD0

fD0

aa′ = 4Re(Ḋa, Ḋa′)D0 = 4Re
∑

i

tr(ρD0
ss L̇

i∗
a L̇

i
a′).

Moreover, σD0 is the symplectic matrix at D0 (see Definition 2)

σD0

aa′ = Im(Ḋa, Ḋa′)D0 = Im
∑

i

tr(ρD0
ss L̇

i∗
a L̇

i
a′)

and S is the real symmetric matrix

Saa′ =
1

2
tr

[
ρD0
ss

(
Ḧaa′ + Im

∑

i

L̈i∗aa′L
i

)]
.

In conclusion, the overlaps of the system-output states have the following limit

lim
t→∞

〈
Ψs+o
u/
√
t
(t)
∣∣∣Ψs+o

u′/
√
t
(t)
〉

= exp

(
−1

8
(u− u′)TfD0(u− u′) + iuTσD0u′ + i(uTSu− u′TSu′)

)

= eiφ(u)−iφ(u′)〈u|u′〉.

where φ(i) := uTSu is a phase angle, and |u〉 = W (u)|Ω〉 is the coherent state on the CCR

algebra CCR(T idD0
, σD0) introduced in Definition 2, so that the overlaps of two coherent states

is given by equation (38).
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29M. Guţă and A. Jençová. Local asymptotic normality in quantum statistics. Commun. Math.

Phys., 276:341–379, 2007.
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