4,274 research outputs found

    PhytoMilk

    Get PDF
    Potential improvement of the salutary effect of organic dairy milk by forage species and by supplementation

    Loop space, (2,0) theory, and solitonic strings

    Get PDF
    We present an interacting action that lives in loop space, and we argue that this is a generalization of the theory for a free tensor multiplet. From this action we derive the Bogomolnyi equation corresponding to solitonic strings. Using the Hopf map, we find a correspondence between BPS strings and BPS monopoles in four-dimensional super Yang-Mills theory. This enable us to find explicit BPS saturated solitonic string solutions.Comment: 29 pages, v3: section 5 is rewritten and string solutions are found, v4: a new section on general covariance in loop spac

    Conformal anomaly of Wilson surface observables - a field theoretical computation

    Full text link
    We make an exact field theoretical computation of the conformal anomaly for two-dimensional submanifold observables. By including a scalar field in the definition for the Wilson surface, as appropriate for a spontaneously broken A_1 theory, we get a conformal anomaly which is such that N times it is equal to the anomaly that was computed in hep-th/9901021 in the large N limit and which relied on the AdS-CFT correspondence. We also show how the spherical surface observable can be expressed as a conformal anomaly.Comment: 18 pages, V3: an `i' dropped in the Wilson surface, overall normalization and misprints corrected, V4: overall normalization factor corrected, references adde

    Five-dimensional SYM from undeformed ABJM

    Full text link
    We expand undeformed ABJM theory around the vacuum solution that was found in arxiv:0909.3101. This solution can be interpreted as a circle-bundle over a two-dimensional plane with a singularity at the origin. By imposing periodic boundary conditions locally far away from the singularity, we obtain a local fuzzy two-torus over which we have a circle fibration. By performing fluctuation analysis we obtain five-dimensional SYM with the precise value on the coupling constant that we would obtain by compactifying multiple M5 branes on the vacuum three-manifold. In the resulting SYM theory we also find a coupling to a background two-form.Comment: 23 page

    Advective collisions

    Full text link
    Small particles advected in a fluid can collide (and therefore aggregate) due to the stretching or shearing of fluid elements. This effect is usually discussed in terms of a theory due to Saffman and Turner [J. Fluid Mech., 1, 16-30, (1956)]. We show that in complex or random flows the Saffman-Turner theory for the collision rate describes only an initial transient (which we evaluate exactly). We obtain precise expressions for the steady-state collision rate for flows with small Kubo number, including the influence of fractal clustering on the collision rate for compressible flows. For incompressible turbulent flows, where the Kubo number is of order unity, the Saffman-Turner theory is an upper bound.Comment: 4 pages, 1 figur

    Inertial-particle dynamics in turbulent flows: caustics, concentration fluctuations, and random uncorrelated motion

    Full text link
    We discuss the relation between three recent approaches of describing the dynamics and the spatial distribution of particles suspended in turbulent flows: phase-space singularities in the inertial particle dynamics (caustics), real-space singularities of the deformation tensor, and random uncorrelated motion. We discuss how the phase- and real-space singularities are related. Their formation is well understood in terms of a local theory. We discuss implications for random uncorrelated motion. Our results are supported by results of direct numerical simulations of inertial particles in model flows.Comment: 20 pages, 9 figures, as publishe

    Deconstructing graviphoton from mass-deformed ABJM

    Full text link
    Mass-deformed ABJM theory has a maximally supersymmetric fuzzy two-sphere vacuum solution where the scalar fields are proportional to the TGRVV matrices. We construct these matrices using Schwinger oscillators. This shows that the ABJM gauge group that corresponds to the fuzzy two-sphere geometry is U(N)×U(N1)U(N)\times U(N-1). We deconstruct the graviphoton term in the D4 brane theory. The normalization of this term is fixed by topological reasons. This gives us the correct normalization of the deconstructed U(1) gauge field and fixes the Yang -Mills coupling constant to the value which corresponds to M5 brane compactified on \mb{R}^ {1,2} \times S^3/{\mb{Z}_k}. The graviphoton term also enable us to show that the zero mode contributions to the partition functions for the D4 and the M5 brane agree.Comment: 26 page

    On the Problem of Multiple M2 Branes

    Full text link
    A simplified version of 3d BL theory is considered, which allows any number N of M2 branes in d=11. The underlying 3-algebra structure is provided by degenerate U(N) Nambu bracket [X,Y,Z] = tr(X) [Y,Z] + tr(Y) [Z,X] + tr(Z) [X,Y], the corresponding f^{abcd} is not totally antisymmetric and extended supersymmetry of the action remains to be checked. All the fields, including auxiliary non-propagating gauge fields, are in adjoint representation of SU(N) and the only remnant of 3-algebra structure is an octuple of gauge singlets, acquiring vacuum expectation value in transition to D2 branes in d=10.Comment: 12 page

    Shape-dependence of particle rotation in isotropic turbulence

    Full text link
    We consider the rotation of neutrally buoyant axisymmetric particles suspended in isotropic turbulence. Using laboratory experiments as well as numerical and analytical calculations, we explore how particle rotation depends upon particle shape. We find that shape strongly affects orientational trajectories, but that it has negligible effect on the variance of the particle angular velocity. Previous work has shown that shape significantly affects the variance of the tumbling rate of axisymmetric particles. It follows that shape affects the spinning rate in a way that is, on average, complementary to the shape-dependence of the tumbling rate. We confirm this relationship using direct numerical simulations, showing how tumbling rate and spinning rate variances show complementary trends for rod-shaped and disk-shaped particles. We also consider a random but non-turbulent flow. This allows us to explore which of the features observed for rotation in turbulent flow are due to the effects of particle alignment in vortex tubes
    corecore