2,289 research outputs found

    Impact of Spatial Filtering on Distortion from Low-Noise Amplifiers in Massive MIMO Base Stations

    Full text link
    In massive MIMO base stations, power consumption and cost of the low-noise amplifiers (LNAs) can be substantial because of the many antennas. We investigate the feasibility of inexpensive, power efficient LNAs, which inherently are less linear. A polynomial model is used to characterize the nonlinear LNAs and to derive the second-order statistics and spatial correlation of the distortion. We show that, with spatial matched filtering (maximum-ratio combining) at the receiver, some distortion terms combine coherently, and that the SINR of the symbol estimates therefore is limited by the linearity of the LNAs. Furthermore, it is studied how the power from a blocker in the adjacent frequency band leaks into the main band and creates distortion. The distortion term that scales cubically with the power received from the blocker has a spatial correlation that can be filtered out by spatial processing and only the coherent term that scales quadratically with the power remains. When the blocker is in free-space line-of-sight and the LNAs are identical, this quadratic term has the same spatial direction as the desired signal, and hence cannot be removed by linear receiver processing

    Out-of-Band Radiation Measure for MIMO Arrays with Beamformed Transmission

    Full text link
    The spatial characteristics of the out-of-band radiation that a multiuser MIMO system emits in the environment, due to its power amplifiers (modeled by a polynomial model) are nonlinear, is studied by deriving an analytical expression for the continuous-time cross-correlation of the transmit signals. At a random spatial point, the same power is received at any frequency on average with a MIMO base station as with a SISO base station when the two radiate the same amount of power. For a specific channel realization however, the received power depends on the channel. We show that the power received out-of-band only deviates little from the average in a MIMO system with multiple users and that the deviation can be significant with only one user. Using an ergodicity argument, we conclude that out-of-band radiation is less of a problem in massive MIMO, where total radiated power is lower compared to SISO systems and that requirements on spectral regrowth can be relaxed in MIMO systems without causing more total out-of-band radiation

    Spatial Characteristics of Distortion Radiated from Antenna Arrays with Transceiver Nonlinearities

    Full text link
    The distortion from massive MIMO (multiple-input--multiple-output) base stations with nonlinear amplifiers is studied and its radiation pattern is derived. The distortion is analyzed both in-band and out-of-band. By using an orthogonal Hermite representation of the amplified signal, the spatial cross-correlation matrix of the nonlinear distortion is obtained. It shows that, if the input signal to the amplifiers has a dominant beam, the distortion is beamformed in the same way as that beam. When there are multiple beams without any one being dominant, it is shown that the distortion is practically isotropic. The derived theory is useful to predict how the nonlinear distortion will behave, to analyze the out-of-band radiation, to do reciprocity calibration, and to schedule users in the frequency plane to minimize the effect of in-band distortion

    Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering

    Get PDF
    Here we report on the development of a new type of hybrid fibrinogen–polylactic acid (FBG–PLA) nanofibres (NFs) with improved stiffness, combining the good mechanical properties of PLA with the excellent cell recognition properties of native FBG. We were particularly interested in the dorsal and ventral cell response to the nanofibres' organization (random or aligned), using human umbilical endothelial cells (HUVECs) as a model system. Upon ventral contact with random NFs, the cells developed a stellate-like morphology with multiple projections. The well-developed focal adhesion complexes suggested a successful cellular interaction. However, time-lapse analysis shows significantly lowered cell movements, resulting in the cells traversing a relatively short distance in multiple directions. Conversely, an elongated cell shape and significantly increased cell mobility were observed in aligned NFs. To follow the dorsal cell response, artificial wounds were created on confluent cell layers previously grown on glass slides and covered with either random or aligned NFs. Time-lapse analysis showed significantly faster wound coverage (within 12 h) of HUVECs on aligned samples vs. almost absent directional migration on random ones. However, nitric oxide (NO) release shows that endothelial cells possess lowered functionality on aligned NFs compared to random ones, where significantly higher NO production was found. Collectively, our studies show that randomly organized NFs could support the endothelization of implants while aligned NFs would rather direct cell locomotion for guided neovascularization

    Ergodic and non-ergodic clustering of inertial particles

    Full text link
    We compute the fractal dimension of clusters of inertial particles in mixing flows at finite values of Kubo (Ku) and Stokes (St) numbers, by a new series expansion in Ku. At small St, the theory includes clustering by Maxey's non-ergodic 'centrifuge' effect. In the limit of St to infinity and Ku to zero (so that Ku^2 St remains finite) it explains clustering in terms of ergodic 'multiplicative amplification'. In this limit, the theory is consistent with the asymptotic perturbation series in [Duncan et al., Phys. Rev. Lett. 95 (2005) 240602]. The new theory allows to analyse how the two clustering mechanisms compete at finite values of St and Ku. For particles suspended in two-dimensional random Gaussian incompressible flows, the theory yields excellent results for Ku < 0.2 for arbitrary values of St; the ergodic mechanism is found to contribute significantly unless St is very small. For higher values of Ku the new series is likely to require resummation. But numerical simulations show that for Ku ~ St ~ 1 too, ergodic 'multiplicative amplification' makes a substantial contribution to the observed clustering.Comment: 4 pages, 2 figure

    Argon spill in the hall of the ATLAS experiment

    Get PDF
    A hazard analysis is in progress to determine the operation mode of the ventilation system in the ATLAS hall in case of an Argon spill. Two risk scenarios have been investigated so far. In the first, the behaviour of an Argon gas pool is calculated for different ventilation strategies. In the second, the behaviour of Argon gas leaking from the bottom part of the detector is studied for different flows. The description of the study, results and conclusions are presented

    Eigenvalue variance bounds for Wigner and covariance random matrices

    Get PDF
    This work is concerned with finite range bounds on the variance of individual eigenvalues of Wigner random matrices, in the bulk and at the edge of the spectrum, as well as for some intermediate eigenvalues. Relying on the GUE example, which needs to be investigated first, the main bounds are extended to families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment Theorem and recent localization results by Erd\"os, Yau and Yin. The case of real Wigner matrices is obtained from interlacing formulas. As an application, bounds on the expected 2-Wasserstein distance between the empirical spectral measure and the semicircle law are derived. Similar results are available for random covariance matrices

    Interpreting the M2-brane Action

    Get PDF
    The world-volume theory of multiple M2-branes proposed recently has a free scalar field. For large vev of this scalar field the world-volume action reduces to that of multiple D2-branes with Yang-Mills coupling proportional to the vev. We suggest that the correct interpretation of this scalar field is as the radial position of the M2-brane center of mass in a cylindrical polar coordinate system. Regarding the azimuthal angle as compact we can regard this as a set of coincident D2-branes in type IIA string theory with varying dilaton and metric. We find that the effective world-volume theory on the D2-branes has Yang-Mills coupling proportional to the radial coordinate; furthermore the radial coordinate satisfies free field equations of motion. This agrees with the corresponding results derived from the M2-brane world-volume theory.Comment: LaTeX file, 6 page
    • …
    corecore