7 research outputs found

    Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cotton boll weevil (<it>Anthonomus grandis</it>) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. <it>In vitro </it>directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of <it>Bacillus thuringiensis</it>.</p> <p>Results</p> <p>Bioassays carried out with <it>A. grandis </it>larvae revealed that the LC<sub>50 </sub>of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability.</p> <p>Conclusions</p> <p>The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control <it>A. grandis</it>.</p

    Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás.

    No full text
    The Cu-Au Visconde deposit lies at the contact zone between the basement (>3.0Ga) and the Grão Pará Group (2.76 Ga) within the so-called Transition Domain of the Mineral Carajás Province. It is located at about 15 km east of the Cu-Au Sossego mine in the county of Canaã de Carajás, Pará state. Felsic metavolcanic rocks, probably belonging to that group, as well as granitic and mafic intrusions, dominate in the deposit and neighboring area. Subordinate ultramafic bodies occur within the mafic units. All these rocks are moderately to strongly hydrothermally altered and show varying degrees of deformation. Mafic dikes and a granitoid isotropic body, the latter probably related to the granitogenesis of 1.88 Ga, represent the last igneous activity in the area and cut the pre-existing rock package. Despite the mineralogical and textural changes, it was possible to infer a monzogranitic to granodioritic composition to the original granitoids largely based on the amounts of chess-board albite. Moreover, the scarcity of primary mafic minerals makes these granitoids similar to the Planalto Granite, which crops out approximately 7 km east of the deposit area. The mineral content and the partially preserved subophitic texture are suggestive that gabros and/or quartz diorites were potential protoliths of the mafic intrusions. On the other hand, the recognition of plagioclase, quartz and K-feldspar primary phenocrysts and the use of trace elements with limited mobility in the hydrothermal environment allowed discriminating a riodacitic composition for the protolith of the felsic volcanic rocks. Grading from ductile to brittle regimes, the hydrothermal alteration changed from early sodic-calcic assemblages, characterized by ubiquitous albitization, scapolitization or amphibolitization, to late potassic assemblages, in which the K-feldspar and Cl-biotite are the diagnostic minerals. Then the alteration restored its sodic-calcic character as indicated by albite, epidote, apatite, tourmaline and fluorite that replaced pre-existing minerals or filled open spaces. At last, it is recorded a calcic-magnesian stage during which clinochlore/Fe-clinochlore, actinolite, carbonate and subordinate talc were equilibrated. In the granitoids, albitization, epidotization and tourmalinization were the most prominent alteration processes, whereas scapolitization, biotitization, amphibolitization and magnetization were more remarkable in gabros/quartz diorites and K-feldspatization in the felsic metavolcanic rocks. The ore, whose formation began at the final stages of the potassic alteration, was essentially controlled by brittle structures. Initially represented by weak chalcopyrite, molybdenite and pyrite disseminations in the zones altered to tremoliteactinolite, scapolite, albite and magnetite, the mineralization evolved to sulfide concentrations in veins and breccias. Among the sulfides chalcopyrite, bornite, molybdenite are dominant, but pyrite and pentlandite also occur together with apatite, scapolite, actinolite, epidote, magnetite, martite, hematite, calcite, and gypsum or fluorite as the main gangue minerals. The typical metallic suite of the sulfide breccia is Fe–Cu–Ni–ETR±Au±Zn±Y±Co±Se, with ƩETR as high as 1030 ppm. Fluid inclusions trapped in quartz, scapolite, apatite and calcite crystals unraveled at least three aqueous fluids. Fluid 1, simplified by the system H2O-NaCl-CaCl2±MgCl2 and present in all host minerals, was hot (450–500ºC) and very saline (up to 58 wt% equivalent NaCl). The alteration and mineralization haloes should have resulted from the interaction of the host rocks with this fluid, which might have experienced cooling and dilution probably due to mixing with surficial waters. After the mineralization event, the deposit recorded the successive inflow of fluid 2 (H2O-NaCl-FeCl2±MgCl2, up to 30 wt % equiv. NaCl) and fluid 3 (H2O-NaCl±KCl, up to 18 wt % equiv. NaCl), both cooler than fluid 1. With a restrict circulation and preserved only in quartz and apatite crystals, fluid 2 might have been related to the intrusion of the late mafic dikes, whereas fluid 3 migration would have taken place in response to the emplacement of the alkali granite (1.88 Ga?), being trapped, similarly to fluid 1, in all host minerals, but as secondary IF. The high salinity and no evidence of boiling, coupled with the presence of Cl-rich minerals, suggest that a purely magmatic source is unlike for fluid 1. As an alternative, it is assumed a mixed source, involving the migration of magmatic or metamorphic fluids throughout carbonatic-evaporitic sequences from which Na, Ca and Cl have been largely leached. The mineralogical, chemical and microthermometric data allowed to characterize the mineralizing fluid as an aqueous solution consisting of NaCl, CaCl2, KCl, FeCl2 and MgCl2(?) that also carried P, B, F, Y, Ba, Sr, Rb and ETR, Cu, Ni and Co, besides S species. The Sossego and the Visconde deposits present similarities in terms of (1) the nature of the host rocks (felsic metavolcanics, granitoids, and mafic intrusions), (2) the types of alteration, highlighting the intense and widespread sodic-calcic metassomatism, (3) the occurrence of the major ore bodies in brecciated zones and (4) the Fe-Cu-Ni-ETR±Au±Co as the metallic signature of the ore. Regarding the main differences, the sub-economic sulfide accumulations and the smaller amounts of massive magnetitites of the Visconde deposit could be listed.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorNo Domínio de Transição da Província Mineral de Carajás, está localizado o depósito cuproaurífero Visconde, a 15 km a leste da mina Sossego. Geologicamente, jaz próximo ao contato entre o embasamento (>3,0 Ga) e o Grupo Grão Pará (2,76 Ga). No depósito e circunvizinhanças, dominam granitoides e corpos máficos, intrusivos em rochas metavulcânicas félsicas, possivelmente pertencentes àquele grupo. Dentro dos corpos máficos, ocorrem variedades ultramáficas subordinadas. Todas essas rochas mostram-se moderadas a fortemente hidrotermalizadas, além de apresentarem variado grau de deformação. Como manifestações ígneas finais, diques máficos e um corpo granitoide isótropo, relacionado provavelmente à granitogênese de 1,88 Ga, cortam o pacote rochoso pré-existente. Não obstante as mudanças mineralógicas e texturais, foi possível inferir para os granitoides, a composição original como monzogranítica a granodiorítica, tendo-se como base, em grande parte, a abundância de albita com textura tabuleiro de xadrez. Além disso, a escassez de minerais máficos primários os torna similares ao Granito Planalto, que fica a 7 km a leste da área. O conteúdo mineralógico e textura subofítica, localmente preservada, sugerem ter sido gabro e/ou quartzodiorito os possíveis protólitos das rochas máficas intrusivas, enquanto que para as rochas metavulcânicas félsicas, a identificação de fenocristais de plagioclásio, quartzo e K-feldspato primários, e a classificação com base em elementos traços de limitada mobilidade em ambiente hidrotermal, permitiram apontar protólito de composição riodacítica. Na passagem do regime dúctil-rúptil a rúptil a alteração hidrotermal evoluiu de um estágio sódico-cálcico precoce, que foi ubíquo e dominado por albitização, escapolitização ou anfibolitização, para um estágio potássico, em que o K-feldspato e Cl-biotita foram os minerais diagnósticos, retomando novamente características sódico-cálcicas, de efeito local e marcadas tanto por assembleias de substituição como de preenchimento, compostas por albita, epidoto, apatita, turmalina e fluorita, para finalmente experimentar um estágio cálciomagnesiano, durante o qual se estabilizaram clinocloro/Fe-clinocloro, actinolita e carbonatos, além de talco subordinado. Nos granitoides, a albitização, epidotização e turmalinização são mais proeminentes e se contrapõem à escapolitização, biotitização, anfibolitização e magnetização, muito expressivas nos gabro/quartzodioritos, e à K-feldspatização, bem mais comum nas rochas metavulcânicas félsicas. O minério cupro-aurífero, cuja formação se iniciou nas fases finais da alteração potássica, foi controlado por estruturas rúpteis. Inicialmente representado por fraca disseminação de calcopirita–pirita–molibdenita em zonas alteradas por tremolita–actinolita, escapolita, albita e magnetita, progrediu para concentrações em veios e brechas compostos por calcopirita–bornita, com molibdenita, pirita e pentlandita mais restritas, que é a associação principal do corpo de minério. A estes sulfetos se juntaram apatita, escapolita, actinolita, epidoto, magnetita, martita, hematita, turmalina, calcita, gipsita ou fluorita como minerais de ganga. A suíte metálica característica da brecha sulfetada é Fe–Cu–Ni–ETR±Au±Zn±Y±Co±Se, com ƩETR alcançando 1030 ppm. Inclusões fluidas, aprisionadas em cristais de quartzo, escapolita, apatita e calcita dos diversos litotipos, acusam o envolvimento de pelo menos três fluidos aquosos. O fluido 1, simplificado pelo sistema H2O-NaCl-CaCl2±MgCl2, presente em todos os minerais hospedeiros, foi quente (450–500ºC) e hipersalino (até 58% em peso eq. de NaCl). Os halos de alteração bem como a mineralização são atribuídos à interação das rochas com este fluido, o qual experimentou resfriamento e diluição devidos provavelmente à mistura com águas superficiais. A entrada do fluido 2 (H2O-NaCl-FeCl2±MgCl2, com até 30% em peso eq. de NaCl) e do fluido 3 (H2ONaCl±KCl com até 18% em peso eq. de NaCl), menos quentes, se deu após o evento mineralizador. De circulação restrita e preservado apenas em cristais de quartzo e apatita, o fluido 2 poderia estar relacionado à intrusão dos diques máficos tardios, enquanto o fluido 3, teria circulado na área durante o alojamento do granito alcalino (1,88 Ga?), e registrado, à semelhança do fluido 1, em todos os minerais hospedeiros, só que em IF secundárias. A elevada salinidade e a falta de evidências de ebulição do fluido 1, somadas à presença de minerais ricos em Cl, sugerem que uma fonte exclusivamente magmática é pouco provável, abrindo possibilidade para indicar uma fonte mista, tendo os fluidos migrado através de sequências carbonático-evaporíticas e lixiviado grande parte do Na, Ca e Cl. Os dados mineralógicos, químicos e microtermométricos permitem caracterizar o fluido mineralizador como solução aquosa constituída por NaCl, CaCl2, KCl, FeCl2 e MgCl2(?), que também transportou P, B, F, Y, Ba, Sr, Rb e ETR, Cu, Ni, Co e espécies de S. Os depósitos Sossego e Visconde mostram similaridades quanto à natureza das rochas hospedeiras (metavulcânicas, intrusivas félsicas e máficas), aos tipos de alteração hidrotermal, em que o intenso metassomatismo sódico-cálcico assumiu caráter regional, à ocorrência principal dos corpos de minério em zonas brechadas e à suíte Fe–Cu–Ni–ETR±Au±Co como assinatura metálica característica do minério. Há, contudo, algumas diferenças, já que no depósito Visconde as acumulações de sulfetos são subeconômicas e a quantidade de magnetititos é bem menos expressiva

    Depósito Cu-Au Visconde, Carajás (PA): geologia e alteração hidrotermal das rochas encaixantes

    No full text
    Distante 15 km a leste da mina Sossego (Canaã de Carajás, no Pará), o depósito Visconde jaz na zona de contato entre o Supergrupo Itacaiúnas (2,76 Ga) e o embasamento (> 3.0 Ga). No depósito e arredores, ocorrem, principalmente, o granito Serra Dourada, riodacitos e gabrodioritos, variavelmente deformados e hidrotermalizados. A Suíte Intrusiva Planalto, também identificada, não mostra feições de alteração das demais rochas. Diques máficos e félsicos cortam o pacote rochoso. Sob condições dúctil-rúpteis iniciais a rúpteis, subsequentemente, a alteração hidrotermal evoluiu de sódico-cálcica (albita, escapolita e anfibólios) precoce e ubíqua para potássica (K-feldspato e Cl-biotita), retomando, em seguida, o caráter sódico-cálcico de efeito local (albita, epidoto, apatita, turmalina e fluorita), para, finalmente, assumir caráter cálcio-magnesiano (clinocloro, actinolita, carbonatos e talco subordinado). No granito Serra Dourada, albitização, epidotização e turmalinização são mais proeminentes e se contrapõem à escapolitização, biotitização, anfibolitização e magnetitização, muito expressivas nos gabros/quartzodioritos, e à K-feldspatização, mais comum nos riodacitos. Os principais corpos de minério são representados por veios e brechas, constituídos por calcopirita-bornita, além de disseminações (calcopirita + pirita ± molibdenita ± pentlandita). A suíte metálica básica é Fe-Cu-Au ± ETR. Abundante sulfeto foi precipitado na transição da alteração potássica para a cálcio-magnesiana, tendo apatita, escapolita, actinolita, epidoto, magnetita, turmalina, calcita, gipsita e fluorita como os principais minerais de ganga. Os metais foram transportados por fluidos hidrotermais ricos em Na, Ca, K, Fe e Mg, além de P, B, F e espécies de S. As similaridades se sobrepõem às diferenças, o que permite considerar os depósitos Visconde e Sossego cogenéticos

    Mineral chemistry and geothermometry of alteration zones in the IOCG Cristalino deposit, Carajas Mineral Province, Brazil

    No full text
    The Cristalino deposit, located in the Serra do Rabo region (Para State, Brazil), is related to a hydrothermal system in which two major alteration stages could be distinguished most likely with the involvement of a hypersaline fluid. The first stage (410-650 degrees C) is characterized by a distal sodic metasomatism that produced almost pure chessboard albite, minor schorlitic tourmaline and REE-rich minerals (allanite-Ce, monazite). It was followed by a pervasive calcic-ferric alteration that generated abundant actinolite (X-Mg = 0.87-0.69, Cl up to 0.59 wt %) in addition to Ce-allanite and magnetite associated with sulfide disseminations and breccia-like bodies composed of chalcopyrite-pyrite-magnetite-Au (early ore association). Locally, Fe-edenite (X-Mg = 0.67-0.42, Cl up to 2.94 wt %) replaced calcic-ferric assemblages within restrict sodic-calcic alteration halos. From 410 down to 220 degrees C, the previous alteration assemblages were overprinted by the hydrothermal products of the second stage. Potassic (K-feldspar, minor biotite) and propylitic (epidote, chlorite, calcite) alterations came into play successively. K-feldspar is practically stoichiometric, but it contains some impurities, notably BaO (up to 1.21 wt %). Chlorite shows the greatest compositional variation among all minerals and its composition seems to have been particularly controlled by the type of host rock, chemistry of the hydrothermal fluid and temperature. Both chamosite and clinoclore (X-Fe = 0.37-0.80) are present, the former being more common. Chlorine contents are in general < 0.02 wt % and a little more significant in chlorites that replaced chessboard albite (up to 0.06 wt %). Their formation temperature ranges from 220 degrees to 360 degrees C, with infill chlorites showing the highest values. The late ore association (chalcopyrite +/- Au +/- hematite +/- pyrite) is contemporaneous with the potassic and propylitic alterations and bears evidence that the Cristalino system evolved to the final stages with increase in oxygen fugacity. Comparatively to other IOCG deposits from the southern sector of the Carajas domain, especially the Sossego and Visconde deposits, two varieties of amphibole (mainly actinolite and edenite) have been formed, but the Cristalino chlorites, despite some overlapping, present very distinct populations not yet described in the other two deposits, confirming the diversity of IOCG systems in Carajas92481505FUNDAÇÃO AMAZÔNIA DE AMPARO A ESTUDOS E PESQUISAS DO PARÁ - FAPESPA573733/2008-
    corecore