131,945 research outputs found
Do computer simulations support the Argument from Disagreement?
According to the Argument from Disagreement (AD) widespread and persistent disagreement on ethical issues indicates that our moral opinions are not influenced by moral facts, either because there are no such facts or because there are such facts but they fail to influence our moral opinions. In an innovative paper, Gustafsson and Peterson (Synthese, published online 16 October, 2010) study the argument by means of computer simulation of opinion dynamics, relying on the well-known model of Hegselmann and Krause (J Artif Soc Soc Simul 5(3):1-33, 2002; J Artif Soc Soc Simul 9(3):1-28, 2006). Their simulations indicate that if our moral opinions were influenced at least slightly by moral facts, we would quickly have reached consensus, even if our moral opinions were also affected by additional factors such as false authorities, external political shifts and random processes. Gustafsson and Peterson conclude that since no such consensus has been reached in real life, the simulation gives us increased reason to take seriously the AD. Our main claim in this paper is that these results are not as robust as Gustafsson and Peterson seem to think they are. If we run similar simulations in the alternative Laputa simulation environment developed by Angere and Olsson (Angere, Synthese, forthcoming and Olsson, Episteme 8(2):127-143, 2011) considerably less support for the AD is forthcoming
Positive definite collections of disks
Let . M. Putinar
and B. Gustafsson proved recently that the matrix , , is positive definite if disks form a disjoint collection. We
extend this result on symmetric collections of discs with overlapping. More
precisely, we show that in the case when the nodes are situated at the
vertices of a regular -gon inscribed in the unit circle and , the matrix is positive definite if and only if
, where is the smallest zero of the Jacobi
polynomial , .Comment: 24 page
Competitive Arsenate and Phosphate Adsorption on Ferrihydrite as Described by the CD-MUSIC Model
The solubility and bioavailability of arsenic in the environment are to a large extent governed by adsorption reactionswith iron (hydr)oxides, the extent of which is affected by competitive interactions with other ions, for example, phosphate. Here,batch experiments were performed with ferrihydrite suspensions to determine the adsorption of arsenate [As(V)] and phosphate(PO4)atdifferent As(V)-PO4ratios. A surface complexation model based on the Charge Distribution MUltisite Ion Complexation(CD-MUSIC) concept (the"Ferrihydrite CD-MUSIC model") was developed to describe these interactions in a way consistent withresults from spectroscopic studies. For this purpose, several previously published data sets on As(V) and PO4adsorption inferrihydrite suspensions were reviewed, including a number of systems containing other major ions (CO32-and Ca2+), and newsurface complexation constants were derived. During model development, it was found that the inclusion of ternary complexes wasnot needed to describe the observed Ca2+-PO4interactions. For both As(V) and PO4, the resulting model predicts the presence ofcorner-sharing bidentate complexes as well as monodentate complexes, with the latter being important particularly at low pH. Theexperimental results showed that As(V) and PO4displayed similar adsorption patterns in the single-ion systems studied, which wereconducted using a constant anion-to-Fe ratio of 0.2. Even so, As(V) was preferentially adsorbed over PO4in competitive systems,particularly at low As(V)-to-PO4ratios when theKdvalues for As(V) were up to 2.1 times as high as those for PO4. The model,which described these patterns very well, suggests that adsorbed As(V) consists of a larger fraction of bidentate complexes than inthe case of PO4. This causes aflatter adsorption isotherm for As(V), which leads to a stronger As(V) adsorption as the As(V)-to-Feratio decreases, compared to that for PO
Where does all the phosphorus go? Mass balance modelling of phosphorus in the Swedish long-term soil fertility experiments
To gain insights into phosphorus (P) dynamics in soils and the ability to predict soil responses to varying fertilizer inputs, mass balance models prove to be valuable tools. In this study, a new dynamic mass balance model, PBalD8, was used to describe the change in extracted P in the A horizon of soils subjected to diverse fertilizer treatments over a period of 50 to 60 years in five soil fertility experiments. The model employed a Freundlich equation to describe soil-solution partitioning of P and assumed that acid-lactate-extractable P represented a labile pool of P in instant equilibrium with soil solution P. Additionally, oxalate-extractable inorganic P was presumed to comprise the sum of the labile and stable pools of P, with mass flux to and from the latter described by Fick's first law. The model was evaluated using results from extractions and P K-edge XANES spectroscopy. Notably, organic P, as revealed by P K-edge XANES, did not substantially contribute to long-term changes in soil P content and was therefore excluded from consideration. In general, the model offered reasonable fits to the extracted P concentrations. However, for the P-depleted treatments, a prerequisite was that the P removal through harvest was lower compared to measurements. Conversely, in three of the soils, the modelled fertilizer inputs needed to be reduced to 70 % to 85 % of the known additions. These discrepancies may be attributed to the involvement of deeper soil horizons, including deep crop uptake and mixing with lower soil layers, although other factors such as lateral dispersion and inaccuracies in estimating applied fertilizers cannot be discounted. These results underscore the necessity of gaining a more comprehensive understanding of how deeper soil horizons influence P mass balances in agricultural soils. In one of the soils, Fja center dot rdingslo center dot v, P K-edge XANES results demonstrated the formation of calcium phosphate over time in the highest fertilization treatment, consistent with the model. Additionally, in two soils, Kungsa center dot ngen and the P-depleted Vreta Kloster soil, the model predicted a significant contribution from mineral weathering. However, the PBalD8 model also projected higher P leaching rates than those observed, suggesting that the model may not fully capture this P output term
Majorana splitting from critical currents in Josephson junctions
A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LNâ‰ξ, where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effectWe acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through Grant No. FIS2015-65706-P (MINECO/FEDER) (P.S.-J), No. FIS2015-64654-P (R.A.), No. FIS2016-80434-P (AEI/FEDER, EU) (E.P.) and the Ramón y Cajal programme through Grant No. RYC-2011-09345 (E.P). J.C. and A.B.S. acknowledge financial support from the Swedish Research Council (Vetenskapsrådet), the Göran Gustafsson Foundation, the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows progra
Recommended from our members
The Aging Heart: Mitophagy at the Center of Rejuvenation.
Aging is associated with structural and functional changes in the heart and is a major risk factor in developing cardiovascular disease. Many recent studies have focused on increasing our understanding of the basis of aging at the cellular and molecular levels in various tissues, including the heart. It is known that there is an age-related decline in cellular quality control pathways such as autophagy and mitophagy, which leads to accumulation of potentially harmful cellular components in cardiac myocytes. There is evidence that diminished autophagy and mitophagy accelerate the aging process, while enhancement preserves cardiac homeostasis and extends life span. Here, we review the current knowledge of autophagy and mitophagy in aging and discuss how age-associated alterations in these processes contribute to cardiac aging and age-related cardiovascular diseases
Improved Color-Temperature Relations and Bolometric Corrections for Cool Stars
We present new grids of colors and bolometric corrections for F-K stars
having 4000 K < Teff < 6500 K, 0.0 < log g < 4.5 and -3.0 < [Fe/H] < 0.0. A
companion paper extends these calculations into the M giant regime. Colors are
tabulated for Johnson U-V and B-V; Cousins V-R and V-I; Johnson-Glass V-K, J-K
and H-K; and CIT/CTIO V-K, J-K, H-K and CO. We have developed these
color-temperature (CT) relations by convolving synthetic spectra with
photometric filter-transmission-profiles. The synthetic spectra have been
computed with the SSG spectral synthesis code using MARCS stellar atmosphere
models as input. Both of these codes have been improved substantially,
especially at low temperatures, through the incorporation of new opacity data.
The resulting synthetic colors have been put onto the observational systems by
applying color calibrations derived from models and photometry of field stars
which have Teffs determined by the infrared-flux method. The color calibrations
have zero points and slopes which change most of the original synthetic colors
by less than 0.02 mag and 5%, respectively. The adopted Teff scale (Bell &
Gustafsson 1989) is confirmed by the extraordinary agreement between the
predicted and observed angular diameters of the field stars. We have also
derived empirical CT relations from the field-star photometry. Except for the
coolest dwarfs (Teff < 5000 K), our calibrated, solar-metallicity model colors
are found to match these and other empirical relations quite well. Our
calibrated, 4 Gyr, solar-metallicity isochrone also provides a good match to
color-magnitude diagrams of M67. We regard this as evidence that our calibrated
colors can be applied to many astrophysical problems, including modelling the
integrated light of galaxies. (abridged)Comment: To appear in the March 2000 issue of the Astronomical Journal. 72
pages including 16 embedded postscript figures (one page each) and 6 embedded
postscript tables (18 pages total
Modeling the Black Hole Excision Problem
We analyze the excision strategy for simulating black holes. The problem is
modeled by the propagation of quasi-linear waves in a 1-dimensional spatial
region with timelike outer boundary, spacelike inner boundary and a horizon in
between. Proofs of well-posed evolution and boundary algorithms for a second
differential order treatment of the system are given for the separate pieces
underlying the finite difference problem. These are implemented in a numerical
code which gives accurate long term simulations of the quasi-linear excision
problem. Excitation of long wavelength exponential modes, which are latent in
the problem, are suppressed using conservation laws for the discretized system.
The techniques are designed to apply directly to recent codes for the Einstein
equations based upon the harmonic formulation.Comment: 21 pages, 14 postscript figures, minor contents updat
An investigation into the Gustafsson limit for small planar antennas using optimisation
The fundamental limit for small antennas provides a guide to the
effectiveness of designs. Gustafsson et al, Yaghjian et al, and
Mohammadpour-Aghdam et al independently deduced a variation of the
Chu-Harrington limit for planar antennas in different forms. Using a
multi-parameter optimisation technique based on the ant colony algorithm,
planar, meander dipole antenna designs were selected on the basis of lowest
resonant frequency and maximum radiation efficiency. The optimal antenna
designs across the spectrum from 570 to 1750 MHz occupying an area of were compared with these limits calculated using the
polarizability tensor. The results were compared with Sievenpiper's comparison
of published planar antenna properties. The optimised antennas have greater
than 90% polarizability compared to the containing conductive box in the range
, so verifying the optimisation algorithm. The generalized
absorption efficiency of the small meander line antennas is less than 50%, and
results are the same for both PEC and copper designs.Comment: 6 pages, 10 figures, in press article. IEEE Transactions on Antennas
and Propagation (2014
- …