30 research outputs found
Veterinary Acupuncture
Acupuncture is the insertion of needles into certain points in the body for the purpose of relieving pain, producing surgical anesthesia, and curing certain diseases. The art originated in China around the year 2600 B.C. It exists there today as their major form of medicine
Should Veterinary Students Specialize?
We have changed a lot from the age of the Renaissance, where the ideal for each person was to be able to do a great many things well. We are entering the age of specialization. Increasingly people are training for more and more specific jobs and well they should be. With the vast amount of information available on so many subjects, it would be nearly impossible for one person to be expert in more than a few areas
Dr. Mohri Ends Career at ISU
Dr. R.W. Mohri is leaving Ames and Iowa State University after fifteen years of service to both. This article will not attempt to be a biography but will illustrate some of his professional accomplishments, in hopes that the readers will realize the caliber of man we are losing
Overview of Advanced LIGO Adaptive Optics
This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The TCS was designed to minimize thermally induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO_2
laser projectors, and Hartmann wavefront sensors. The system meets the requirements of correcting for nominal distortion in aLIGO to a maximum residual error of 5.4 nm rms, weighted across the laser beam, for up to 125 W of laser input power into the interferometer
Overview of Advanced LIGO Adaptive Optics
This is an overview of the adaptive optics used in Advanced LIGO (aLIGO),
known as the thermal compensation system (TCS). The thermal compensation system
was designed to minimize thermally-induced spatial distortions in the
interferometer optical modes and to provide some correction for static
curvature errors in the core optics of aLIGO. The TCS is comprised of ring
heater actuators, spatially tunable CO laser projectors and Hartmann
wavefront sensors. The system meets the requirements of correcting for nominal
distortion in Advanced LIGO to a maximum residual error of 5.4nm, weighted
across the laser beam, for up to 125W of laser input power into the
interferometer
Sequencing of 15 622 Gene-bearing BACs Clarifies the Gene-dense Regions of the Barley Genome
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barleyâAe. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant
Overview of Advanced LIGO Adaptive Optics
This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The TCS was designed to minimize thermally induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO_2
laser projectors, and Hartmann wavefront sensors. The system meets the requirements of correcting for nominal distortion in aLIGO to a maximum residual error of 5.4 nm rms, weighted across the laser beam, for up to 125 W of laser input power into the interferometer
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âŒ99% of the euchromatic genome and is accurate to an error rate of âŒ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Recommended from our members
Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST: Barley provides facile access to BAC sequences and their annotations, along with the barleyâ Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.Keywords: Aegilops tauschii,
Barley,
centromere BACs,
HarvEST:Barley,
gene distribution,
synteny,
recombination frequency,
Hordeum vulgare L.,
BAC sequencingThis is the publisherâs final pdf. The published article is copyrighted by the author(s) and published by John Wiley & Sons Ltd. on behalf of the Society for Experimental Biology. The published article can be found at: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291365-313X. Supporting information is available online at: http://onlinelibrary.wiley.com/doi/10.1111/tpj.12959/abstrac
Veterinary Acupuncture
Acupuncture is the insertion of needles into certain points in the body for the purpose of relieving pain, producing surgical anesthesia, and curing certain diseases. The art originated in China around the year 2600 B.C. It exists there today as their major form of medicine.</p