Abstract

Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST: Barley provides facile access to BAC sequences and their annotations, along with the barley– Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.Keywords: Aegilops tauschii, Barley, centromere BACs, HarvEST:Barley, gene distribution, synteny, recombination frequency, Hordeum vulgare L., BAC sequencingThis is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by John Wiley & Sons Ltd. on behalf of the Society for Experimental Biology. The published article can be found at: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291365-313X. Supporting information is available online at: http://onlinelibrary.wiley.com/doi/10.1111/tpj.12959/abstrac

    Similar works