30 research outputs found

    Age-dependent neuropsychiatric symptoms in the NF-ÎşB/c-Rel knockout mouse model of Parkinson's Disease

    Get PDF
    Non-motor symptoms are frequently observed in Parkinson's disease (PD) and precede the onset of motor deficits by years. Among them, neuropsychiatric symptoms, including anxiety, depression, and apathy, are increasingly considered as a major challenge for patients with PD and their caregivers. We recently reported that mice lacking the nuclear factor-ÎşB (NF-ÎşB)/c-Rel protein (c-rel-/- mice) develop an age-dependent PD-like pathology and phenotype characterized by the onset of non-motor symptoms, including constipation and hyposmia, starting at 2 months of age, and motor deficits at 18 months. To assess whether c-rel-/- mice also suffer from neuropsychiatric symptoms, in this study we tested different cohorts of wild-type (wt) and c-rel-/- mice at 3, 6, 12, and 18-20 months with different behavioral tests. Mice lacking c-Rel displayed anxiety and depressive-like behavior starting in the premotor phase at 12 months, as indicated by the analysis with the open field (OF) test and the forced swim test with water wheel (FST), respectively. A deficit in the goal-oriented nesting building test was detected at 18-20 months, suggesting apathetic behavior. Taken together, these results indicate that c-rel-/- mice recapitulate the onset and the progression of PD-related neuropsychiatric symptoms. Therefore, this animal model may represent a valuable tool to study the prodromal stage of PD and for testing new therapeutic strategies to alleviate neuropsychiatric symptoms

    Synergistic association of resveratrol and histone deacetylase inhibitors as treatment in amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, progressive paralysis and finally death. Despite the research efforts, currently there is no cure for ALS. In recent years, multiple epigenetic mechanisms have been associated with neurodegenerative diseases. A pathological role for histone hypoacetylation and the abnormal NF-ÎşB/RelA activation involving deacetylation of lysines, with the exclusion of lysine 310, has been established in ALS. Recent findings indicate that the pathological acetylation state of NF-ÎşB/RelA and histone 3 (H3) occurring in the SOD1(G93A) murine model of ALS can be corrected by the synergistic combination of low doses of the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator resveratrol and the histone deacetylase (HDAC) inhibitors MS-275 (entinostat) or valproate. The combination of the epigenetic drugs, by rescuing RelA and the H3 acetylation state, promotes a beneficial and sexually dimorphic effect on disease onset, survival and motor neurons degeneration. In this mini review, we discuss the potential of the epigenetic combination of resveratrol with HDAC inhibitors in the ALS treatment

    Plasma Cystatin C correlates with plasma NfL levels and predicts disease progression in Parkinson's disease

    Get PDF
    INTRODUCTION: Previous studies reported increased plasma levels of Cystatin C (Cys-C) in Parkinson's disease (PD) and claimed for a possible association with disease severity and progression. The aim of this study was to evaluate plasma Cys-C in PD and healthy controls (HC) and test its association with markers of peripheral inflammation, neurodegeneration and clinical progression in a longitudinal study. METHODS: Plasma Cys-C, high-sensitive C-reactive protein (hsCRP), interleukin 6 (IL-6) and Neurofilament Light Chain (NfL) were assessed at the baseline in 71 consecutive non-demented PD and 69 HC. PD patients underwent an extensive motor and cognitive assessment at baseline and after 2 years of follow-up. The association of Cys-C with disease severity was evaluated in a multilinear model adjusted for the effect of age, sex, disease duration and peripheral inflammation. RESULTS: Cys-C levels appeared to be higher in PD compared to controls and correlated with the plasma neuronal marker NfL (r = 0.204, p = 0.046). In longitudinal analyses, PD patients with higher Cys-C levels exhibited faster motor progression at two years of follow-up independently from the peripheral inflammatory profile. CONCLUSIONS: Cys-C was associated with higher NfL levels and a remarkably faster motor progression in PD independently from peripheral inflammation. Further studies are needed in order to understand the mechanisms underpinning the association of Cys-C with higher neuronal damage markers in neurodegenerative diseases

    Epigenetic Regulation of Fatty Acid Amide Hydrolase in Alzheimer Disease

    Get PDF
    OBJECTIVE: Alzheimer disease (AD) is a progressive, degenerative and irreversible neurological disorder with few therapies available. In search for new potential targets, increasing evidence suggests a role for the endocannabinoid system (ECS) in the regulation of neurodegenerative processes. METHODS: We have studied the gene expression status and the epigenetic regulation of ECS components in peripheral blood mononuclear cells (PBMCs) of subjects with late-onset AD (LOAD) and age-matched controls (CT). RESULTS: We found an increase in fatty acid amide hydrolase (faah) gene expression in LOAD subjects (2.30 ± 0.48) when compared to CT (1.00 ± 0.14; *p<0.05) and no changes in the mRNA levels of any other gene of ECS elements. Consistently, we also observed in LOAD subjects an increase in FAAH protein levels (CT: 0.75 ± 0.04; LOAD: 1.11 ± 0.15; *p<0.05) and activity (pmol/min per mg protein CT: 103.80 ± 8.73; LOAD: 125.10 ± 4.00; *p<0.05), as well as a reduction in DNA methylation at faah gene promoter (CT: 55.90 ± 4.60%; LOAD: 41.20 ± 4.90%; *p<0.05). CONCLUSIONS: Present findings suggest the involvement of FAAH in the pathogenesis of AD, highlighting the importance of epigenetic mechanisms in enzyme regulation; they also point to FAAH as a new potential biomarker for AD in easily accessible peripheral cells

    From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke

    No full text
    Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported

    Adenosine A2A Receptor and IL-10 in Peripheral Blood Mononuclear Cells of Patients with Mild Cognitive Impairment

    Get PDF
    Adenosine suppresses immune responses through the A2A receptor (A2AR). This study investigated the interleukin 10 (IL-10) genetic profile and the expression of A2AR in peripheral blood mononuclear cells (PBMCs) of patients with mild cognitive impairment (MCI), Alzheimer disease (AD), and age-matched controls to verify, if they may help distinguish different forms of cognitive decline. We analyzed the IL-10 genotype and the expression of A2AR in 41 subjects with AD, 10 with amnestic MCI (a-MCI), 49 with multiple cognitive domain MCI (mcd-MCI), and 46 controls. There was a significant linear increase in A2AR mRNA levels and A2AR density from mcd-MCI to a-MCI, with intermediate levels being found in AD. The IL-10 AA genotype frequency was 67% in a-MCI, 46% in AD, 35% in mcd-MCI, and 20% in controls. These data suggest that the assessment of the IL-10 genotype and the expression of A2AR in PBMCs may be a valuable means of differentiating between a-MCI and mcd-MCI

    Peripheral Blood Mononuclear Cells as a Laboratory to Study Dementia in the Elderly

    Get PDF
    The steady and dramatic increase in the incidence of Alzheimer’s disease (AD) and the lack of effective treatments have stimulated the search for strategies to prevent or delay its onset and/or progression. Since the diagnosis of dementia requires a number of established features that are present when the disease is fully developed, but not always in the early stages, the need for a biological marker has proven to be urgent, in terms of both diagnosis and monitoring of AD. AD has been shown to affect peripheral blood mononuclear cells (PBMCs) that are a critical component of the immune system which provide defence against infection. Although studies are continuously supplying additional data that emphasize the central role of inflammation in AD, PBMCs have not been sufficiently investigated in this context. Delineating biochemical alterations in AD blood constituents may prove valuable in identifying accessible footprints that reflect degenerative processes within the Central Nervous System (CNS). In this review, we address the role of biomarkers in AD with a focus on the notion that PBMCs may serve as a peripheral laboratory to find molecular signatures that could aid in differential diagnosis with other forms of dementia and in monitoring of disease progression
    corecore