91 research outputs found
Molecular analysis of urban rabies case from vampire bat in Corrientes, Argentina
En abril de 2006 se detectó virus de la rabia (RABV) en un gato doméstico de la ciudad de Corrientes, Argentina. La caracterización molecular identificó al murciélago Desmodus rotundus como la fuente viral. El análisis genético de 22 cepas de RABV aisladas de D. rotundus obtenidos entre 1998–2006 en Argentina, reveló la cocirculación de dos linajes genéticos en la Provincia de Corrientes. La alteración por parte del hombre, del ecosistema del murciélago en la región, podría explicar los cambios en su comportamiento y en la circulación del virus de la rabia
Phylodynamics of vampire bat-transmitted rabies in Argentina
Common vampire bat populations distributed from Mexico to Argentina are important rabies reservoir hosts in Latin America. The aim of this work was to analyse the population structure of the rabies virus (RABV) variants associated with vampire bats in the Americas and to study their phylodynamic pattern within Argentina. The phylogenetic analysis based on all available vampire bat-related N gene sequences showed both a geographical and a temporal structure. The two largest groups of RABV variants from Argentina were isolated from northwestern Argentina and from the central western zone of northeastern Argentina, corresponding to livestock areas with different climatic, topographic and biogeographical conditions, which determined their dissemination and evolutionary patterns. In addition, multiple introductions of the infection into Argentina, possibly from Brazil, were detected. The phylodynamic analysis suggests that RABV transmission dynamics is characterized by initial epizootic waves followed by local enzootic cycles with variable persistence. Anthropogenic interventions in the ecosystem should be assessed taking into account not only the environmental impact but also the potential risk of disease spreading through dissemination of current RABV lineages or the emergence of novel ones associated with vampire bats.Fil: Torres, Carolina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Virología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lema, C.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud; ArgentinaFil: Gury Dohmen, F.. Instituto de Zoonosis “Dr. Luis Pasteur”; ArgentinaFil: Beltran, F.. Instituto de Zoonosis “Dr. Luis Pasteur”; ArgentinaFil: Novaro, L.. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; ArgentinaFil: Russo, S.. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; ArgentinaFil: Freire, M. C.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud; ArgentinaFil: Velasco Villa, A.. Centers for Disease Control and Prevention; Estados UnidosFil: Mbayed, Viviana Andrea. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Virología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cisterna , D. M.. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; Argentin
Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1
<p>Abstract</p> <p>Background</p> <p>Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI) and Cr(III). Chromate [Cr(VI)] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI) to less-toxic Cr(III) by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by <it>Bacillus cereus </it>SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence.</p> <p>Results</p> <p><it>Bacillus cereus </it>SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 30 mM when induced with Cr(VI). A complete bacterial reduction of 1 mM Cr(VI) was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, <it>chrIA</it>1, and two additional <it>chrA </it>genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene <it>azoR </it>and four nitroreductase genes <it>nitR </it>possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR) technology, it was shown that expression of adjacent genes <it>chrA</it>1 and <it>chrI </it>was induced in response to Cr(VI) but expression of the other two chromate transporter genes <it>chrA</it>2 and <it>chrA</it>3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of <it>chrIA</it>1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of <it>chrIA</it>1 in <it>B. cereus </it>SJ1 implied the possibility of recent horizontal gene transfer.</p> <p>Conclusion</p> <p>Our results indicate that expression of the chromate transporter gene <it>chrA</it>1 was inducible by Cr(VI) and most likely regulated by the putative transcriptional regulator ChrI. The bacterial Cr(VI)-resistant level was also inducible. The presence of an adjacent arsenic resistance gene cluster nearby the <it>chrIA</it>1 suggested that strong selective pressure by chromium and arsenic could cause bacterial horizontal gene transfer. Such events may favor the survival and increase the resistance level of <it>B. cereus </it>SJ1.</p
Universal Stress Proteins Are Important for Oxidative and Acid Stress Resistance and Growth of Listeria monocytogenes EGD-e In Vitro and In Vivo
Background: Pathogenic bacteria maintain a multifaceted apparatus to resist damage caused by external stimuli. As part of this, the universal stress protein A (UspA) and its homologues, initially discovered in Escherichia coli K-12 were shown to possess an important role in stress resistance and growth in several bacterial species.
Methods and Findings: We conducted a study to assess the role of three homologous proteins containing the UspA domain in the facultative intracellular human pathogen Listeria monocytogenes under different stress conditions. The growth properties of three UspA deletion mutants (deltalmo0515, deltalmo1580 and deltalmo2673) were examined either following challenge with a sublethal concentration of hydrogen peroxide or under acidic conditions. We also examined their ability for intracellular survival within murine macrophages. Virulence and growth of usp mutants were further characterized in invertebrate and vertebrate infection models.
Tolerance to acidic stress was clearly reduced in Δlmo1580 and deltalmo0515, while oxidative stress dramatically diminished growth in all mutants. Survival within macrophages was significantly decreased in deltalmo1580 and deltalmo2673 as compared to the wild-type strain. Viability of infected Galleria mellonella larvae was markedly higher when injected with deltalmo1580 or deltalmo2673 as compared to wild-type strain inoculation, indicating impaired virulence of bacteria lacking these usp genes. Finally, we observed severely restricted growth of all chromosomal deletion mutants in mice livers and spleens as compared to the load of wild-type bacteria following infection.
Conclusion: This work provides distinct evidence that universal stress proteins are strongly involved in listerial stress response and survival under both in vitro and in vivo growth conditions
The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation
Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU-NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces
Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks
Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis
Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells
Herein, we present a facile solution-based route towards nanostructured, hybrid absorber layers based on tin mono-sulfide (SnS), an emerging, non-toxic absorber material for low-cost and large-scale PV applications. Charge photogeneration properties in the hybrid system are studied using transient absorption spectroscopy and fabricated solar cells show efficient photocurrent generation over a broad spectral range
- …