38 research outputs found
Swift J1644+5734: the EVN view
A small fraction of Tidal Disruption Events (TDE) produce relativistic jets, evidenced by their non-thermal X-ray spectra and transient radio emission. Here we present milliarcsecond-resolution imaging results on TDE J1644+5734 with the European VLBI Network (EVN). These provide a strong astrometric constraint on the average apparent jet velocity
βapp < 0.27, that constrains the intrinsic jet velocity for a given viewing angle
Unified dark energy models : a phenomenological approach
A phenomenological approach is proposed to the problem of universe
accelerated expansion and of the dark energy nature. A general class of models
is introduced whose energy density depends on the redshift in such a way
that a smooth transition among the three main phases of the universe evolution
(radiation era, matter domination, asymptotical de Sitter state) is naturally
achieved. We use the estimated age of the universe, the Hubble diagram of Type
Ia Supernovae and the angular size - redshift relation for compact and
ultracompact radio structures to test whether the model is in agreement with
astrophysical observation and to constrain its main parameters. Although
phenomenologically motivated, the model may be straightforwardly interpreted as
a two fluids scenario in which the quintessence is generated by a suitably
chosen scalar field potential. On the other hand, the same model may also be
read in the context of unified dark energy models or in the framework of
modified Friedmann equation theories.Comment: 12 pages, 10 figures, accepted for publication on Physical Review
Some Observational Consequences of Brane World Cosmologies
The presence of dark energy in the Universe is inferred directly and
indirectly from a large body of observational evidence. The simplest and most
theoretically appealing possibility is the vacuum energy density (cosmological
constant). However, although in agreement with current observations, such a
possibility exacerbates the well known cosmological constant problem, requiring
a natural explanation for its small, but nonzero, value. In this paper we focus
our attention on another dark energy candidate, one arising from gravitational
\emph{leakage} into extra dimensions. We investigate observational constraints
from current measurements of angular size of high- compact radio-sources on
accelerated models based on this large scale modification of gravity. The
predicted age of the Universe in the context of these models is briefly
discussed. We argue that future observations will enable a more accurate test
of these cosmologies and, possibly, show that such models constitute a viable
possibility for the dark energy problem.Comment: 6 pages, 4 figures, to appear in Phys. Rev. D (minor revisions
Condensate cosmology -- dark energy from dark matter
Imagine a scenario in which the dark energy forms via the condensation of
dark matter at some low redshift. The Compton wavelength therefore changes from
small to very large at the transition, unlike quintessence or metamorphosis. We
study CMB, large scale structure, supernova and radio galaxy constraints on
condensation by performing a 4 parameter likelihood analysis over the Hubble
constant and the three parameters associated with Q, the condensate field:
Omega_Q, w_f and z_t (energy density and equation of state today, and redshift
of transition). Condensation roughly interpolates between Lambda CDM (for large
z_t) and sCDM (low z_t) and provides a slightly better fit to the data than
Lambda CDM. We confirm that there is no degeneracy in the CMB between H and z_t
and discuss the implications of late-time transitions for the Lyman-alpha
forest. Finally we discuss the nonlinear phase of both condensation and
metamorphosis, which is much more interesting than in standard quintessence
models.Comment: 13 pages, 13 colour figures. Final version with discussion of TE
cross-correlation spectra for condensation and metamorphosis in light of the
WMAP result
Constraining the dark energy with galaxy clusters X-ray data
The equation of state characterizing the dark energy component is constrained
by combining Chandra observations of the X-ray luminosity of galaxy clusters
with independent measurements of the baryonic matter density and the latest
measurements of the Hubble parameter as given by the HST key project. By
assuming a spatially flat scenario driven by a "quintessence" component with an
equation of state we place the following limits on the
cosmological parameters and : (i) and (1) if the
equation of state of the dark energy is restricted to the interval (\emph{usual} quintessence) and (ii) and
() if violates the null energy condition and assume values (\emph{extended} quintessence or ``phantom'' energy). These results are in
good agreement with independent studies based on supernovae observations,
large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe
Kaluza-Klein Type Robertson Walker Cosmological Model With Dynamical Cosmological Term
In this paper we have analyzed the Kaluza-Klein type Robertson Walker (RW)
cosmological models by considering three different forms of variable :
, and
. It is found that, the connecting free parameters of the
models with cosmic matter and vacuum energy density parameters are equivalent,
in the context of higher dimensional space time. The expression for the look
back time, luminosity distance and angular diameter distance are also derived.
This work has thus generalized to higher dimensions the well-known results in
four dimensional space time. It is found that there may be significant
difference in principle at least, from the analogous situation in four
dimensional space time.Comment: 16 pages, no figur
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie