2,911 research outputs found

    The use of linear feature detection to investigate thematic mapper data performance and processing

    Get PDF
    The geometric and radiometric characteristics of thematic mapper data through analysis of linear features in the data are investigated. The particular aspects considered are: (1) thematic mapper ground IFOV; (2) radiometric contrast between linear features and background; (3) precision of system geometric correction; (4) band-to-band registration; and (5) potential utility of TM data for linear feature detection especially as compared to MSS data. It is shown that TM data may be used to estimate TM pixel size and to illustrate band-band mis-registration. Further, the geometry and radiometry of the data are sufficiently precise to allow accurate estimation of the widths of linear features. In optimum conditions features one quarter of a pixel in width may be accurately measured. These results have considerable potential for applications for hydrological and topographic mapping

    Resource allocation, hyperphagia and compensatory growth

    Get PDF
    Organisms often shown enhanced growth during recovery from starvation, and can even overtake continuously fed conspecifics (overcompensation). In an earlier paper (Ecology 84, 2777-2787), we studied the relative role played by hyperphagia and resource allocation in producing overcompensation in juvenile (non-reproductive) animals. We found that, although hyperphagia always produces growth compensation, overcompensation additionally requires protein allocation control which routes assimilate preferentially to structure during recovery. In this paper we extend our model to cover reproductively active individuals and demonstrate that growth rate overcompensation requires a similar combination of hyperphagia and allocation control which routes the part of enhanced assimilation not used for reproduction preferentially towards structural growth. We compare the properties of our dynamic energy budget model with an earlier proposal, due to Kooijman, which we extend to include hyperphagia. This formulation assumes that the rate of allocation to reserves is controlled by instantaneous feeding rate, and one would thus expect that an extension to include hyperphagia would not predict growth overcompensation. However, we show that a self-consistent representation of the hyperphagic response in Kooijman's model overrides its fundamental dynamics, leading to preferential allocation to structural growth during recovery and hence to growth overcompensation

    Deep Learning How to Fit an Intravoxel Incoherent Motion Model to Diffusion-Weighted MRI

    Full text link
    Purpose: This prospective clinical study assesses the feasibility of training a deep neural network (DNN) for intravoxel incoherent motion (IVIM) model fitting to diffusion-weighted magnetic resonance imaging (DW-MRI) data and evaluates its performance. Methods: In May 2011, ten male volunteers (age range: 29 to 53 years, mean: 37 years) underwent DW-MRI of the upper abdomen on 1.5T and 3.0T magnetic resonance scanners. Regions of interest in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla were delineated independently by two readers. DNNs were trained for IVIM model fitting using these data; results were compared to least-squares and Bayesian approaches to IVIM fitting. Intraclass Correlation Coefficients (ICC) were used to assess consistency of measurements between readers. Intersubject variability was evaluated using Coefficients of Variation (CV). The fitting error was calculated based on simulated data and the average fitting time of each method was recorded. Results: DNNs were trained successfully for IVIM parameter estimation. This approach was associated with high consistency between the two readers (ICCs between 50 and 97%), low intersubject variability of estimated parameter values (CVs between 9.2 and 28.4), and the lowest error when compared with least-squares and Bayesian approaches. Fitting by DNNs was several orders of magnitude quicker than the other methods but the networks may need to be re-trained for different acquisition protocols or imaged anatomical regions. Conclusion: DNNs are recommended for accurate and robust IVIM model fitting to DW-MRI data. Suitable software is available at (1)

    Effects of streptozotocin-induced diabetes on the pharmacology of rat conduit and resistance intrapulmonary arteries

    Get PDF
    Abstract Background Poor control of blood glucose in diabetes is known to promote vascular dysfunction and hypertension. Diabetes was recently shown to be linked to an increased prevalence of pulmonary hypertension. The aim of this study was to determine how the pharmacological reactivity of intrapulmonary arteries is altered in a rat model of diabetes. Methods Diabetes was induced in rats by the β-cell toxin, streptozotocin (STZ, 60 mg/kg), and isolated conduit and resistance intrapulmonary arteries studied 3–4 months later. Isometric tension responses to the vasoconstrictors phenylephrine, serotonin and PGF2α, and the vasodilators carbachol and glyceryl trinitrate, were compared in STZ-treated rats and age-matched controls. Results STZ-induced diabetes significantly blunted the maximum response of conduit, but not resistance pulmonary arteries to phenylephrine and serotonin, without a change in pEC50. Agonist responses were differentially reduced, with serotonin (46% smaller) affected more than phenylephrine (32% smaller) and responses to PGF2α unaltered. Vasoconstriction caused by K+-induced depolarisation remained normal in diabetic rats. Endothelium-dependent dilation to carbachol and endothelium-independent dilation to glyceryl trinitrate were also unaffected. Conclusion The small resistance pulmonary arteries are relatively resistant to STZ-induced diabetes. The impaired constrictor responsiveness of conduit vessels was agonist dependent, suggesting possible loss of receptor expression or function. The observed effects cannot account for pulmonary hypertension in diabetes, rather the impaired reactivity to vasoconstrictors would counteract the development of pulmonary hypertensive disease.</p

    Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex

    Get PDF
    In whiskered animals, activity is evoked in the primary sensory afferent cells (trigeminal nerve) by mechanical stimulation of the whiskers. In some cell populations this activity is correlated well with continuous stimulus parameters such as whisker deflection magnitude, but in others it is observed to represent events such as whisker-stimulator contact or detachment. The transduction process is mediated by the mechanics of the whisker shaft and follicle-sinus complex (FSC), and the mechanics and electro-chemistry of mechanoreceptors within the FSC. An understanding of this transduction process and the nature of the primary neural codes generated is crucial for understanding more central sensory processing in the thalamus and cortex. However, the details of the peripheral processing are currently poorly understood. To overcome this deficiency in our knowledge, we constructed a simulated electro-mechanical model of the whisker-FSC-mechanoreceptor system in the rat and tested it against a variety of data drawn from the literature. The agreement was good enough to suggest that the model captures many of the key features of the peripheral whisker system in the rat

    Homeownership and effectiveness of the South Africa government housing subsidy scheme

    Get PDF
    This paper presents findings on the effectiveness of the South Africa government housing subsidy scheme in the delivery of houses to its citizens, thus providing homeownership especially to the low-income group and the disadvantaged poor. The paper also evaluates the usage of the houses by the occupants. The results from the post-occupancy survey of the provided houses revealed that the progressive realization of housing for the low-income and disadvantaged groups is being met as all beneficiaries were South African citizens. The survey also revealed that the beneficiaries living in the subsidized houses were originally allocated the houses by the Gauteng Department of Housing (GDOH), which oversees housing allocation in the province adopted as the site for the study. However, from those originally allocated, it was indicated that some of the beneficiaries were previously living in shacks, while some were homeless (absolute homelessness). Further findings from the survey showed that the original intended use of the houses by the government (private residential use) is what the subsidized houses are being used for as revealed by the respondents. This paper starts with an overview of the literature on this topic and the importance of homeownership, and then presents the results of the analysis and findings of the research. Finally, the paper draws some conclusions and makes recommendations. The originality of this paper is based on the fact that there have been issues surrounding the South Africa government's financial commitment of 5% of its Gross Domestic Product (GDP) is grossly inadequate to overcome its huge housing backlog. Due to the limited study to substantiate if the little devoted GDP is making any impact on the disadvantaged group, the current research contributes to this body of knowledge

    Huge Seebeck coefficients in non-aqueous electrolytes

    Full text link
    The Seeebeck coefficients of the non-aqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol and ethylene-glycol are measured in a temperature range from T=30 to T=45 C. The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or "structure making" effects of tetraalkylammonium ions on the structure of alcohols.Comment: Submitted to J. Chem. Phy

    Spatial organization and evolutional period of the epidemic model using cellular automata

    Full text link
    We investigate epidemic models with spatial structure based on the cellular automata method. The construction of the cellular automata is from the study by Weimar and Boon about the reaction-diffusion equations [Phys. Rev. E 49, 1749 (1994)]. Our results show that the spatial epidemic models exhibit the spontaneous formation of irregular spiral waves at large scales within the domain of chaos. Moreover, the irregular spiral waves grow stably. The system also shows a spatial period-2 structure at one dimension outside the domain of chaos. It is interesting that the spatial period-2 structure will break and transform into a spatial synchronous configuration in the domain of chaos. Our results confirm that populations embed and disperse more stably in space than they do in nonspatial counterparts.Comment: 6 papges,5 figures. published in Physics Review
    corecore