1,718 research outputs found

    A basal ganglia inspired model of action selection evaluated in a robotic survival task.

    Get PDF
    The basal ganglia system has been proposed as a possible neural substrate for action selection in the vertebrate brain. We describe a robotic implementation of a model of the basal ganglia and demonstrate the capacity of this system to generate adaptive switching between several acts when embedded in a robot that has to "survive" in a laboratory environment. A comparison between this brain-inspired selection mechanism and classical "winner-takes-all" selection highlights some adaptive properties specific to the model, such as avoidance of dithering and energy-saving. These properties derive, in part, from the capacity of simulated basal ganglia-thalamo-cortical loops to generate appropriate "behavioral persistence"

    Microwave photovoltage and photoresistance effects in ferromagnetic microstrips

    Full text link
    We investigate the dc electric response induced by ferromagnetic resonance in ferromagnetic Permalloy (Ni80Fe20) microstrips. The resulting magnetization precession alters the angle of the magnetization with respect to both dc and rf current. Consequently the time averaged anisotropic magnetoresistance (AMR) changes (photoresistance). At the same time the time-dependent AMR oscillation rectifies a part of the rf current and induces a dc voltage (photovoltage). A phenomenological approach to magnetoresistance is used to describe the distinct characteristics of the photoresistance and photovoltage with a consistent formalism, which is found in excellent agreement with experiments performed on in-plane magnetized ferromagnetic microstrips. Application of the microwave photovoltage effect for rf magnetic field sensing is discussed.Comment: 16 pages, 15 figure

    Modified two-potential approach to tunneling problems

    Get PDF
    One-body quantum tunneling to continuum is treated via the two-potential approach, dividing the tunneling potential into external and internal parts. We show that corrections to this approach can be minimized by taking the separation radius inside the interval determined by simple expressions. The resulting two-potential approach reproduces the resonance energy and its width, both for narrow and wide resonances. We also demonstrate that, without losing its accuracy, the two-potential approach can be modified to a form resembling the R-matrix theory, yet without any uncertainties of the latter related to the choice of the matching radius.Comment: 7 two-column pages, 3 figures, extra-explanation added, Phys. Rev. A, in pres

    Is there an integrative center in the vertebrate brain-stem? A robotic evaluation of a model of the reticular formation viewed as an action selection device

    Get PDF
    Neurobehavioral data from intact, decerebrate, and neonatal rats, suggests that the reticular formation provides a brainstem substrate for action selection in the vertebrate central nervous system. In this article, Kilmer, McCulloch and Blum’s (1969, 1997) landmark reticular formation model is described and re-evaluated, both in simulation and, for the first time, as a mobile robot controller. Particular model configurations are found to provide effective action selection mechanisms in a robot survival task using either simulated or physical robots. The model’s competence is dependent on the organization of afferents from model sensory systems, and a genetic algorithm search identified a class of afferent configurations which have long survival times. The results support our proposal that the reticular formation evolved to provide effective arbitration between innate behaviors and, with the forebrain basal ganglia, may constitute the integrative, ’centrencephalic’ core of vertebrate brain architecture. Additionally, the results demonstrate that the Kilmer et al. model provides an alternative form of robot controller to those usually considered in the adaptive behavior literature

    Cannibalism as a life boat mechanism

    Get PDF
    Under certain conditions a cannibalistic population can survive when food for the adults is too scarce to support a non-cannibalistic population. Cannibalism can have this lifeboat effect if (i) the juveniles feed on a resource inaccessible to the adults; and (ii) the adults are cannibalistic and thus incorporate indirectly the inaccessible resource. Using a simple model we conclude that the mechanism works when, at low population densities, the average yield, in terms of new offspring, due to the energy provided by one cannibalized juvenile is larger than one
    • …
    corecore