86 research outputs found

    Clinical features, pathophysiology, and treatment of levodopa-induced dyskinesias in Parkinson's disease

    Get PDF
    Dyskinetic disorders are characterized by excess of motor activity that may interfere with normal movement control. In patients with Parkinson's disease, the chronic levodopa treatment induces dyskinetic movements known as levodopa-induced dyskinesias (LID). This paper analyzed the pathophysiology, clinical manifestations, pharmacological treatments, and surgical procedures to treat hyperkinetic disorders. Surgery is currently the only treatment available for Parkinson's disease that may improve both parkinsonian motor syndrome and LID. However, this paper shows the different mechanisms involved are not well understood

    Geometric phases of mesoscopic spin in Bose-Einstein condensates

    Full text link
    We propose a possible scheme for generating spin-J geometric phases using a coupled two-mode Bose-Einstein condensate (BEC). First we show how to observe the standard Berry phase using Raman coupling between two hyperfine states of the BEC. We find that the presence of intrinsic interatomic collisions creates degeneracy in energy that allows implementation of the non-Abelian geometric phases as well. The evolutions produced can be used to produce interference between different atomic species with high numbers of atoms or to fine control the difference in atoms between the two species. Finally, we show that errors in the standard Berry phase due to elastic collisions may be corrected by controlling inelastic collisions between atoms.Comment: 6 pages, 2 figure

    VEHICLE CLASSIFICATION IN URBAN REGIONS OF THE GLOBAL SOUTH FROM AERIAL IMAGERY

    Get PDF
    Land transport is a major contributor to the human-caused climate change; knowing the total number and composition of the vehicle fleet is key for estimating its emissions. Especially for countries of the Global South, emission inventories are associated with high uncertainties because fleet data are often unknown or outdated – classifying vehicles on remote sensing has the potential to change this. We present the XWHEEL dataset based on annotated vehicles in aerial images with six classes depending on the number of wheels, size and motorization. The dataset consists of 73 annotated aerial images of the city of Dar es Salaam (Tanzania) with 15,973 vehicles. To analyze the performance of the dataset, a convolutional neural network, ReDet, and a transformer-based neural network, DINOOBB, are trained with different configurations and validated on the validation and test split, but also on aerial images from other regions. The transformer-based DINO architecture has been adapted to the remote sensing domain and modified to predict Oriented Bounding Boxes. Results show a good performance on the test split from Dar es Salaam, when the two-wheeled classes are merged and the non-motorized three-wheeled vehicles are excluded due to their rare occurrence. The best performing algorithm configurations with four classes were then tested on aerial images of Kathmandu (Nepal) and Kampala (Uganda). The performance drops for cycles and three-wheeled vehicles, as their appearance varies between countries. A main finding is that we can reliably detect the different vehicle classes in Dar es Salaam. When algorithms trained on XWHEEL are generalized to other regions of the Global South, performance decreases for the more difficult classes (bicycles and tricycles). To obtain results that are comparable across the board, we therefore recommend expanding the dataset with additional annotations from other regions of the Global South

    Benchmarking the performance of a low-cost Magnetic Resonance Control System at multiple sites in the open MaRCoS community

    Get PDF
    Purpose: To describe the current properties and capabilities of an open-source hardware and software package that is being developed by many sites internationally with the aim of providing an inexpensive yet flexible platform for low-cost MRI. Methods: This paper describes three different setups from 50 to 360 mT in different settings, all of which used the MaRCoS console for acquiring data, and different types of software interfaces (custom-built GUI or PulSeq overlay) to acquire the data. Results: Images are presented from both phantoms and in vivo from healthy volunteers to demonstrate the image quality that can be obtained from the MaRCoS hardware/software interfaced to different low-field magnets. Conclusions: The results presented here show that a number of different sequences commonly used in the clinic can be programmed into an open-source system relatively quickly and easily, and can produce good quality images even at this early stage of development. Both the hardware and software will continue to develop, and it is an aim of this paper to encourage other groups to join this international consortium.Comment: 9 pages, 10 figures, comments welcom

    The Close Environment of Seyfert Galaxies and Its Implication for Unification Models

    Get PDF
    This paper presents a statistical analysis of the circumgalactic environment of nearby Seyfert galaxies based on a computer-aided search of companion galaxies on the Digitized Sky Survey (DSS). An intrinsic difference between the environment of Seyfert 1 and Seyfert 2 galaxies, suggested by previous work, is confirmed as statistically significant. For Seyfert 2 galaxies we find a significant excess of large companions (diameter of companion >= 10 Kpc) within a search radius <= 100 Kpc of projected linear distance, as well as within a search radius equal to three times the diameter \ds of each Seyfert galaxy. For Seyfert 1 galaxies there is no clear evidence of any excess of companion galaxies neither within 100 Kpc, nor within 3\ds. For all samples the number of companions suggests a markedly non-Poissonian distribution for galaxies on scales <= 100 Kpc. This difference in environment is not compatible with the simplest formulation of the Unification Model for Seyferts: both types 1 and 2 should be intrinsicaly alike, the only difference being due to orientation of an obscuring torus. We propose an alternative formulation.Comment: 1 figure, accepted for publication in Astrophysical Journal Letter

    Efficient and robust entanglement generation in a many-particle system with resonant dipole-dipole interactions

    Get PDF
    We propose and discuss a scheme for robust and efficient generation of many-particle entanglement in an ensemble of Rydberg atoms with resonant dipole-dipole interactions. It is shown that in the limit of complete dipole blocking, the system is isomorphic to a multimode Jaynes-Cummings model. While dark-state population transfer is not capable of creating entanglement, other adiabatic processes are identified that lead to complex, maximally entangled states, such as the N-particle analog of the GHZ state in a few steps. The process is robust, works for even and odd particle numbers and the characteristic time for entanglement generation scales with N^a, with a being less than unity.Comment: 4 figure

    Proposal for measurment of harmonic oscillator Berry phase in ion traps

    Get PDF
    We propose a scheme for measuring the Berry phase in the vibrational degree of freedom of a trapped ion. Starting from the ion in a vibrational coherent state we show how to reverse the sign of the coherent state amplitude by using a purely geometric phase. This can then be detected through the internal degrees of freedom of the ion. Our method can be applied to preparation of Schr\"odinger cat states.Comment: Replaced with revised versio

    Portable magnetic resonance imaging of patients indoors, outdoors and at home

    Full text link
    Mobile medical imaging devices are invaluable for clinical diagnostic purposes both in and outside healthcare institutions. Among the various imaging modalities, only a few are readily portable. Magnetic resonance imaging (MRI), the gold standard for numerous healthcare conditions, does not traditionally belong to this group. Recently, low-field MRI start-up companies have demonstrated the first decisive steps towards portability within medical facilities, but these are so far incompatible with more demanding use cases such as in remote and developing regions, sports facilities and events, medical and military camps, or home healthcare. Here we present in vivo images taken with a light, home-made, low-field extremity MRI scanner outside the controlled environment provided by medical facilities. To demonstrate the true portability of the system and benchmark its performance in various relevant scenarios, we have acquired images of a volunteer's knee in: i) an MRI physics laboratory; ii) an office room; iii) outside a campus building, connected to a nearby power outlet; iv) in open air, powered from a small fuel-based generator; and v) at the volunteer's home. All images have been acquired within clinically viable times, and signal-to-noise ratios (SNR) and tissue contrast suffice for 2D and 3D reconstructions with diagnostic value, with comparable overall image quality across all five situations. Furthermore, the volunteer carries a fixation metallic implant screwed to the femur, which leads to strong artifacts in standard clinical systems but appears sharp in our low-field acquisitions. Altogether, this work opens a path towards highly accessible MRI under circumstances previously unrealistic.Comment: 17 pages, 4 figures, comments welcom
    • …
    corecore